funGp: An R Package for Gaussian Process Regression with Scalar and Functional Inputs

被引:1
|
作者
Betancourt, Jose [1 ]
Bachoc, Francois [1 ]
Klein, Thierry [1 ]
Idier, Deborah [2 ]
Rohmer, Jeremy [2 ]
Deville, Yves [3 ]
机构
[1] Univ Toulouse, Ecole Natl Aviat Civile ENAC, Inst Math Toulouse IMT, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Bur Rech Geol & Minieres BRGM, 3 Av Claude Guillemin, F-45060 Orleans 2, France
[3] Alpestat, Chambery, France
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 109卷 / 05期
关键词
Gaussian process; metamodeling; functional inputs; computer experiments; R; ANT COLONY OPTIMIZATION; COMPUTER EXPERIMENTS; CROSS-VALIDATION; MODEL; ALGORITHM; METHODOLOGY;
D O I
10.18637/jss.v109.i05
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article introduces funGp, an R package which handles regression problems involving multiple scalar and/or functional inputs, and a scalar output, through the Gaussian process model. This is particularly of interest for the design and analysis of computer experiments with expensive-to-evaluate numerical codes that take as inputs regularly sampled time series. Rather than imposing any particular parametric input-output relationship in advance (e.g., linear, polynomial), Gaussian process models extract this information directly from the data. The package offers built-in dimension reduction, which helps to simplify the representation of the functional inputs and obtain lighter models. It also implements an ant colony based optimization algorithm which supports the calibration of multiple structural characteristics of the model such as the state of each input (active or inactive) and the type of kernel function, while seeking for greater prediction power. The implemented methods are tested and applied to a real case in the domain of marine flooding.
引用
收藏
页码:1 / 51
页数:51
相关论文
共 50 条
  • [41] Brq: an R package for Bayesian quantile regression
    Rahim Alhamzawi
    Haithem Taha Mohammad Ali
    METRON, 2020, 78 : 313 - 328
  • [42] lmridge: A Comprehensive R Package for Ridge Regression
    Ullah, Muhammad Imdad
    Aslam, Muhammad
    Altaf, Saima
    R JOURNAL, 2018, 10 (02): : 326 - 346
  • [43] Regularized Ordinal Regression and the ordinalNet R Package
    Wurm, Michael J.
    Rathouz, Paul J.
    Hanlon, Bret M.
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 99 (06): : 1 - 42
  • [44] A Toolbox for Nonlinear Regression in R: The Package nlstools
    Baty, Florent
    Ritz, Christian
    Charles, Sandrine
    Brutsche, Martin
    Flandrois, Jean-Pierre
    Delignette-Muller, Marie-Laure
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 66 (05): : 1 - 21
  • [45] PCovR: An R Package for Principal Covariates Regression
    Vervloet, Marlies
    Kiers, Henk A. L.
    Van den Noortgate, Wim
    Ceulemans, Eva
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 65 (08): : 1 - 14
  • [46] npbr: A Package for Nonparametric Boundary Regression in R
    Daouia, Abdelaati
    Laurent, Thibault
    Noh, Hohsuk
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 79 (09):
  • [47] Brq: an R package for Bayesian quantile regression
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2020, 78 (03): : 313 - 328
  • [48] Distributed robust Gaussian Process regression
    Sebastian Mair
    Ulf Brefeld
    Knowledge and Information Systems, 2018, 55 : 415 - 435
  • [49] Sparse Additive Gaussian Process Regression
    Luo, Hengrui
    Nattino, Giovanni
    Pratola, Matthew T.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [50] The extended skew Gaussian process for regression
    Alodat M.T.
    Al-Rawwash M.Y.
    METRON, 2014, 72 (3) : 317 - 330