A Toolbox for Nonlinear Regression in R: The Package nlstools

被引:0
|
作者
Baty, Florent [1 ]
Ritz, Christian [2 ]
Charles, Sandrine [3 ]
Brutsche, Martin [1 ]
Flandrois, Jean-Pierre [3 ]
Delignette-Muller, Marie-Laure [3 ]
机构
[1] Cantonal Hosp St Gallen, CH-9007 St Gallen, Switzerland
[2] Univ Copenhagen, DK-1168 Copenhagen, Denmark
[3] Univ Lyon, Lyon, France
来源
JOURNAL OF STATISTICAL SOFTWARE | 2015年 / 66卷 / 05期
关键词
confidence regions; residuals; diagnostic tools; resampling techniques; starting values; 6-minute walk test; nonlinear regression; R; LISTERIA-MONOCYTOGENES; OXYGEN-UPTAKE; GROWTH; EXERCISE; CURVES;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Nonlinear regression models are applied in a broad variety of scientific fields. Various R functions are already dedicated to fitting such models, among which the function nls () has a prominent position. Unlike linear regression fitting of nonlinear models relies on non-trivial assumptions and therefore users are required to carefully ensure and validate the entire modeling. Parameter estimation is carried out using some variant of the leastsquares criterion involving an iterative process that ideally leads to the determination of the optimal parameter estimates. Therefore, users need to have a clear understanding of the model and its parameterization in the context of the application and data considered, an a priori idea about plausible values for parameter estimates, knowledge of model diagnostics procedures available for checking crucial assumptions, and, finally, an understanding of the limitations in the validity of the underlying hypotheses of the fitted model and its implication for the precision of parameter estimates. Current nonlinear regression modules lack dedicated diagnostic functionality. So there is a need to provide users with an extended toolbox of functions enabling a careful evaluation of nonlinear regression fits. To this end, we introduce a unified diagnostic framework with the R package nls tools. In this paper, the various features of the package are presented and exempli fied using a worked example from pulmonary medicine.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] The R package "eseis" - a software toolbox for environmental seismology
    Dietze, Michael
    EARTH SURFACE DYNAMICS, 2018, 6 (03) : 669 - 686
  • [2] Regression standardization with the R package stdReg
    Arvid Sjölander
    European Journal of Epidemiology, 2016, 31 : 563 - 574
  • [3] Regression standardization with the R package stdReg
    Sjolander, Arvid
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2016, 31 (06) : 563 - 574
  • [4] ERAF: A R package for regression and forecasting
    Filippone, M.
    Masulli, F.
    Rovetta, S.
    BIOLOGICAL AND ARTIFICIAL INTELLIGENCE ENVIRONMENTS, 2005, : 165 - 173
  • [5] R-environment package for regression analysis
    Arnhold, Emmanuel
    PESQUISA AGROPECUARIA BRASILEIRA, 2018, 53 (07) : 870 - 873
  • [6] lmridge: A Comprehensive R Package for Ridge Regression
    Ullah, Muhammad Imdad
    Aslam, Muhammad
    Altaf, Saima
    R JOURNAL, 2018, 10 (02): : 326 - 346
  • [7] Brq: an R package for Bayesian quantile regression
    Rahim Alhamzawi
    Haithem Taha Mohammad Ali
    METRON, 2020, 78 : 313 - 328
  • [8] Regularized Ordinal Regression and the ordinalNet R Package
    Wurm, Michael J.
    Rathouz, Paul J.
    Hanlon, Bret M.
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 99 (06): : 1 - 42
  • [9] PCovR: An R Package for Principal Covariates Regression
    Vervloet, Marlies
    Kiers, Henk A. L.
    Van den Noortgate, Wim
    Ceulemans, Eva
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 65 (08): : 1 - 14
  • [10] npbr: A Package for Nonparametric Boundary Regression in R
    Daouia, Abdelaati
    Laurent, Thibault
    Noh, Hohsuk
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 79 (09):