funGp: An R Package for Gaussian Process Regression with Scalar and Functional Inputs

被引:1
|
作者
Betancourt, Jose [1 ]
Bachoc, Francois [1 ]
Klein, Thierry [1 ]
Idier, Deborah [2 ]
Rohmer, Jeremy [2 ]
Deville, Yves [3 ]
机构
[1] Univ Toulouse, Ecole Natl Aviat Civile ENAC, Inst Math Toulouse IMT, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Bur Rech Geol & Minieres BRGM, 3 Av Claude Guillemin, F-45060 Orleans 2, France
[3] Alpestat, Chambery, France
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 109卷 / 05期
关键词
Gaussian process; metamodeling; functional inputs; computer experiments; R; ANT COLONY OPTIMIZATION; COMPUTER EXPERIMENTS; CROSS-VALIDATION; MODEL; ALGORITHM; METHODOLOGY;
D O I
10.18637/jss.v109.i05
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article introduces funGp, an R package which handles regression problems involving multiple scalar and/or functional inputs, and a scalar output, through the Gaussian process model. This is particularly of interest for the design and analysis of computer experiments with expensive-to-evaluate numerical codes that take as inputs regularly sampled time series. Rather than imposing any particular parametric input-output relationship in advance (e.g., linear, polynomial), Gaussian process models extract this information directly from the data. The package offers built-in dimension reduction, which helps to simplify the representation of the functional inputs and obtain lighter models. It also implements an ant colony based optimization algorithm which supports the calibration of multiple structural characteristics of the model such as the state of each input (active or inactive) and the type of kernel function, while seeking for greater prediction power. The implemented methods are tested and applied to a real case in the domain of marine flooding.
引用
收藏
页码:1 / 51
页数:51
相关论文
共 50 条
  • [21] Gaussian Copula Regression in R
    Masarotto, Guido
    Varin, Cristiano
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 77 (08): : 1 - 26
  • [22] Regression standardization with the R package stdReg
    Arvid Sjölander
    European Journal of Epidemiology, 2016, 31 : 563 - 574
  • [23] Regression standardization with the R package stdReg
    Sjolander, Arvid
    EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2016, 31 (06) : 563 - 574
  • [24] ERAF: A R package for regression and forecasting
    Filippone, M.
    Masulli, F.
    Rovetta, S.
    BIOLOGICAL AND ARTIFICIAL INTELLIGENCE ENVIRONMENTS, 2005, : 165 - 173
  • [25] Neuronal Gaussian Process Regression
    Friedrich, Johannes
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [26] RECURSIVE GAUSSIAN PROCESS REGRESSION
    Huber, Marco F.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3362 - 3366
  • [27] A Gaussian process robust regression
    Murata, N
    Kuroda, Y
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2005, (157): : 280 - 283
  • [28] Bagging for Gaussian process regression
    Chen, Tao
    Ren, Jianghong
    NEUROCOMPUTING, 2009, 72 (7-9) : 1605 - 1610
  • [29] Overview of Gaussian process regression
    He, Zhi-Kun
    Liu, Guang-Bin
    Zhao, Xi-Jing
    Wang, Ming-Hao
    Kongzhi yu Juece/Control and Decision, 2013, 28 (08): : 1121 - 1129
  • [30] Hierarchical Gaussian Process Regression
    Park, Sunho
    Choi, Seungjin
    PROCEEDINGS OF 2ND ASIAN CONFERENCE ON MACHINE LEARNING (ACML2010), 2010, 13 : 95 - 110