Estimating the Rate-Distortion Function by Wasserstein Gradient Descent

被引:0
|
作者
Yang, Yibo [1 ]
Eckstein, Stephan [2 ]
Nutz, Marcel [3 ]
Mandt, Stephan [1 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92717 USA
[2] Swiss Fed Inst Technol, Zurich, Switzerland
[3] Columbia Univ, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
MAXIMUM-LIKELIHOOD; COMPUTATION; CAPACITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the theory of lossy compression, the rate-distortion (R-D) function R(D) describes how much a data source can be compressed (in bit-rate) at any given level of fidelity (distortion). Obtaining R(D) for a given data source establishes the fundamental performance limit for all compression algorithms. We propose a new method to estimate R(D) from the perspective of optimal transport. Unlike the classic Blahut-Arimoto algorithm which fixes the support of the reproduction distribution in advance, our Wasserstein gradient descent algorithm learns the support of the optimal reproduction distribution by moving particles. We prove its local convergence and analyze the sample complexity of our R-D estimator based on a connection to entropic optimal transport. Experimentally, we obtain comparable or tighter bounds than state-of-the-art neural network methods on low-rate sources while requiring considerably less tuning and computation effort. We also highlight a connection to maximum-likelihood deconvolution and introduce a new class of sources that can be used as test cases with known solutions to the R-D problem.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Rate-Distortion Bounds for an ε-Insensitive Distortion Measure
    Watanabe, Kazuho
    [J]. 2013 IEEE INFORMATION THEORY WORKSHOP (ITW), 2013,
  • [42] COMPUTATION OF RATE-DISTORTION FUNCTIONS
    CSISZAR, I
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (01) : 122 - 124
  • [44] Quantum rate-distortion coding
    Barnum, H
    [J]. PHYSICAL REVIEW A, 2000, 62 (04): : 6
  • [45] RATE-DISTORTION THEORY AND APPLICATION
    DAVISSON, LD
    [J]. PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1972, 60 (07): : 800 - &
  • [46] A Rate-Distortion Approach to Caching
    Timo, Roy
    Bidokhti, Shirin Saeedi
    Wigger, Michele
    Geiger, Bernhard C.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (03) : 1957 - 1976
  • [47] Bounds for Permutation Rate-Distortion
    Farnoud , Farzad
    Schwartz, Moshe
    Bruck, Jehoshua
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (02) : 703 - 712
  • [48] Bounds for Permutation Rate-Distortion
    Farnoud , Farzad
    Schwartz, Moshe
    Bruck, Jehoshua
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 6 - 10
  • [49] On the Physics of Rate-Distortion Theory
    Merhav, Neri
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 71 - 75
  • [50] Rate-Distortion Function for Gamma Sources under Absolute-Log Distortion Measure
    Watanabe, Kazuho
    Ikeda, Shiro
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 2557 - +