Estimating the Rate-Distortion Function by Wasserstein Gradient Descent

被引:0
|
作者
Yang, Yibo [1 ]
Eckstein, Stephan [2 ]
Nutz, Marcel [3 ]
Mandt, Stephan [1 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92717 USA
[2] Swiss Fed Inst Technol, Zurich, Switzerland
[3] Columbia Univ, New York, NY 10027 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
基金
美国国家科学基金会;
关键词
MAXIMUM-LIKELIHOOD; COMPUTATION; CAPACITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the theory of lossy compression, the rate-distortion (R-D) function R(D) describes how much a data source can be compressed (in bit-rate) at any given level of fidelity (distortion). Obtaining R(D) for a given data source establishes the fundamental performance limit for all compression algorithms. We propose a new method to estimate R(D) from the perspective of optimal transport. Unlike the classic Blahut-Arimoto algorithm which fixes the support of the reproduction distribution in advance, our Wasserstein gradient descent algorithm learns the support of the optimal reproduction distribution by moving particles. We prove its local convergence and analyze the sample complexity of our R-D estimator based on a connection to entropic optimal transport. Experimentally, we obtain comparable or tighter bounds than state-of-the-art neural network methods on low-rate sources while requiring considerably less tuning and computation effort. We also highlight a connection to maximum-likelihood deconvolution and introduce a new class of sources that can be used as test cases with known solutions to the R-D problem.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Estimating Predictive Rate-Distortion Curves via Neural Variational Inference
    Hahn, Michael
    Futrell, Richard
    ENTROPY, 2019, 21 (07)
  • [32] On the Rate-Distortion Function for Binary Source Coding With Side Information
    Sechelea, Andrei
    Munteanu, Adrian
    Cheng, Samuel
    Deligiannis, Nikos
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2016, 64 (12) : 5203 - 5216
  • [33] Modified rate-distortion function with optimal classification for wavelet coding
    Chen, CC
    Chen, T
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL III, 1997, : 86 - 89
  • [34] The Gaussian Rate-Distortion Function of Sparse Regression Codes with Optimal
    Venkataramanan, Ramji
    Tatikonda, Sekhar
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2844 - 2848
  • [35] Stochastic gradient descent for barycenters in Wasserstein space
    Backhoff, Julio
    Fontbona, Joaquin
    Rios, Gonzalo
    Tobar, Felipe
    JOURNAL OF APPLIED PROBABILITY, 2025, 62 (01) : 15 - 43
  • [36] The quadratic Gaussian rate-distortion function for source uncorrelated distortions
    Derpich, Milan S.
    Ostergaard, Jan
    Goodwin, Graham C.
    DCC: 2008 DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2008, : 73 - 82
  • [37] New bounds on the rate-distortion function of a binary Markov source
    Jalali, Shirin
    Weissman, Tsachy
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 571 - 575
  • [38] Lower Bounds on the Rate-Distortion Function of Individual LDGM Codes
    Kudekar, Shrinivas
    Urbanke, Ruediger
    2008 5TH INTERNATIONAL SYMPOSIUM ON TURBO CODES AND RELATED TOPICS, 2008, : 379 - 384
  • [39] THE RATE-DISTORTION FUNCTION ON CLASSES OF SOURCES DETERMINED BY SPECTRAL CAPACITIES
    POOR, HV
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (01) : 19 - 26
  • [40] ON CALCULATING SAKRISONS RATE-DISTORTION FUNCTION FOR CLASSES OF PARAMETERIZED SOURCES
    WOLFE, LB
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (04) : 1160 - 1163