Estimating the Rate-Distortion Function by Wasserstein Gradient Descent

被引:0
|
作者
Yang, Yibo [1 ]
Eckstein, Stephan [2 ]
Nutz, Marcel [3 ]
Mandt, Stephan [1 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92717 USA
[2] Swiss Fed Inst Technol, Zurich, Switzerland
[3] Columbia Univ, New York, NY 10027 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
基金
美国国家科学基金会;
关键词
MAXIMUM-LIKELIHOOD; COMPUTATION; CAPACITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the theory of lossy compression, the rate-distortion (R-D) function R(D) describes how much a data source can be compressed (in bit-rate) at any given level of fidelity (distortion). Obtaining R(D) for a given data source establishes the fundamental performance limit for all compression algorithms. We propose a new method to estimate R(D) from the perspective of optimal transport. Unlike the classic Blahut-Arimoto algorithm which fixes the support of the reproduction distribution in advance, our Wasserstein gradient descent algorithm learns the support of the optimal reproduction distribution by moving particles. We prove its local convergence and analyze the sample complexity of our R-D estimator based on a connection to entropic optimal transport. Experimentally, we obtain comparable or tighter bounds than state-of-the-art neural network methods on low-rate sources while requiring considerably less tuning and computation effort. We also highlight a connection to maximum-likelihood deconvolution and introduce a new class of sources that can be used as test cases with known solutions to the R-D problem.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] On the extreme cases of the rate-distortion function for robust descriptions
    Tuncel, E
    Rose, K
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 196 - 196
  • [22] Lower bounds on the rate-distortion function of LDGM codes
    Dimakis, A. G.
    Wainwright, M. J.
    Ramchandran, K.
    2007 IEEE INFORMATION THEORY WORKSHOP, VOLS 1 AND 2, 2007, : 650 - 655
  • [23] On the Rate-Distortion Function of Sampled Cyclostationary Gaussian Processes
    Abakasanga, Emeka
    Shlezinger, Nir
    Dabora, Ron
    ENTROPY, 2020, 22 (03)
  • [24] BOUNDS ON RATE-DISTORTION FUNCTION FOR STATIONARY SOURCES WITH MEMORY
    WYNER, AD
    ZIV, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (05) : 508 - +
  • [25] Lower bound to the AWGN remote rate-distortion function
    Gastpar, Michael
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 1104 - 1109
  • [26] On the symmetric Gaussian multiple description rate-distortion function
    Tian, Chao
    Mohajer, Soheil
    Diggavi, Suhas
    DCC: 2008 DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2008, : 402 - +
  • [27] The Rate-Distortion Function for Successive Refinement of Abstract Sources
    Kostina, Victoria
    Tuncel, Ertem
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1923 - 1927
  • [28] Numerical Calculation of Rate-Distortion Function of Information Source
    Lei, Qianzhao
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (01): : 113 - 116
  • [29] Minimax Rate-Distortion
    Mahmood, Adeel
    Wagner, Aaron B.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (12) : 7712 - 7737
  • [30] Estimating Rate-Distortion for Multiple Description Coding Based on Zero Padding
    Chang, Rong-Hua
    Su, Chieh-Wei
    Lin, Chow-Sing
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2016, 19 (02): : 229 - 239