Estimating the Rate-Distortion Function by Wasserstein Gradient Descent

被引:0
|
作者
Yang, Yibo [1 ]
Eckstein, Stephan [2 ]
Nutz, Marcel [3 ]
Mandt, Stephan [1 ]
机构
[1] Univ Calif Irvine, Irvine, CA 92717 USA
[2] Swiss Fed Inst Technol, Zurich, Switzerland
[3] Columbia Univ, New York, NY 10027 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | 2023年
基金
美国国家科学基金会;
关键词
MAXIMUM-LIKELIHOOD; COMPUTATION; CAPACITY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the theory of lossy compression, the rate-distortion (R-D) function R(D) describes how much a data source can be compressed (in bit-rate) at any given level of fidelity (distortion). Obtaining R(D) for a given data source establishes the fundamental performance limit for all compression algorithms. We propose a new method to estimate R(D) from the perspective of optimal transport. Unlike the classic Blahut-Arimoto algorithm which fixes the support of the reproduction distribution in advance, our Wasserstein gradient descent algorithm learns the support of the optimal reproduction distribution by moving particles. We prove its local convergence and analyze the sample complexity of our R-D estimator based on a connection to entropic optimal transport. Experimentally, we obtain comparable or tighter bounds than state-of-the-art neural network methods on low-rate sources while requiring considerably less tuning and computation effort. We also highlight a connection to maximum-likelihood deconvolution and introduce a new class of sources that can be used as test cases with known solutions to the R-D problem.
引用
收藏
页数:27
相关论文
共 50 条
  • [11] CONVERGENCE TO RATE-DISTORTION FUNCTION FOR GAUSSIAN SOURCES
    BUNIN, BJ
    WOLF, JK
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (01) : 65 - +
  • [12] Achieving the Gaussian rate-distortion function by prediction
    Zamir, Ram
    Kochman, Yuval
    Erez, Uri
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (07) : 3354 - 3364
  • [13] On the multiterminal rate-distortion function for acoustic sensing
    Konsbruck, Robert L.
    Telatar, Emre
    Vetterli, Martin
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 4371 - 4374
  • [14] Rate-Distortion Function of the Stochastic Block Model
    Wafula, Martin Wachiye
    Vippathalla, Praneeth Kumar
    Coon, Justin
    Badiu, Mihai-Alin
    FIFTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEECONF, 2023, : 699 - 703
  • [15] BOUND ON RATE-DISTORTION FUNCTION AND APPLICATION TO IMAGES
    TASTO, M
    WINTZ, PA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (01) : 150 - +
  • [16] Achieving the Gaussian rate-distortion function by prediction
    Zamir, Ram
    Kochman, Yuval
    Erez, Uri
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 803 - +
  • [17] Rate-Distortion Optimization for Adaptive Gradient Quantization in Federated Learning
    Chen, Guojun
    Yu, Lu
    Luo, Wenqiang
    Xu, Yinfei
    Song, Tiecheng
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [18] AN IMPROVED UPPER BOUND ON THE RATE-DISTORTION FUNCTION OF IMAGES
    Duan, Zhihao
    Ma, Jack
    He, Jiangpeng
    Zhu, Fengqing
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 246 - 250
  • [19] The rate-distortion function for the quadratic gaussian CEO problem
    Oohama, Y
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (03) : 1057 - 1070
  • [20] ON THE RATE-DISTORTION FUNCTION FOR THE NONSTATIONARY GAUSSIAN AUTOREGRESSIVE PROCESS
    HASHIMOTO, T
    ARIMOTO, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (04) : 478 - 480