Higher-order rogue waves due to a coupled cubic-quintic nonlinear Schrödinger equations in a nonlinear electrical network

被引:1
|
作者
Djelah, Gabriel [1 ]
Ndzana, Fabien I. I. [1 ,2 ,3 ]
Abdoulkary, Saidou [1 ,4 ]
English, L. Q. [5 ]
Mohamadou, Alidou [1 ,2 ,6 ,7 ]
机构
[1] Univ Maroua, Fac Sci, Complex Syst, POB 814, Maroua, Cameroon
[2] Univ Yaounde I, Int Ctr Complex Syst, Fac Sci, POB 812, Yaounde, Cameroon
[3] Ecole Normale Super Enseignement Tech Ebolowa, BP 886, Ebolowa, Cameroon
[4] Ecole Natl Super Mines & Ind Petrolieres, Dept SF, POB 08, Kaele, Cameroon
[5] Dickinson Coll, Dept Phys & Astron, Carlisle, PA 17013 USA
[6] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[7] Abdus Salam Int Ctr Theoret Phys, POB 586,Str Costiera II, I-34014 Trieste, Italy
关键词
Nonlinear transmission lines; Coupled cubic-quintic nonlinear Schr & ouml; dinger; equations; Generalized Darboux transformation; Rogue waves; SCHRODINGER-EQUATIONS; TRANSMISSION-LINES; INTEGRABILITY;
D O I
10.1016/j.physleta.2024.129666
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a nonlinear dispersive electrical transmission network, with a CMOS varactor. Using the reductive perturbation method in semi-discrete limit, we show that the dynamics of modulated waves is governed by a pair of coupled cubic-quintic nonlinear Schr & ouml;dinger equations. Through the generalized Darboux transformation, we construct high order rogue waves solutions including pairs of first-, second- and third-order rational solutions. Our results show that the wavenumber influences the amplitude and phase of waves. We numerically show that the first and second order rogue waves are more stable than the third ones and in good agreement with the analytical results.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Vector rogue waves for the N-coupled generalized nonlinear Schrodinger equations with cubic-quintic nonlinearity in an optical fiber
    Wang, Yu-Feng
    Tian, Bo
    Sun, Wen-Rong
    Liu, Rong-Xiang
    OPTIK, 2016, 127 (14): : 5750 - 5756
  • [42] q-Deformed solitary pulses in the higher-order nonlinear Schro spacing diaeresis dinger equation with cubic-quintic nonlinear terms
    Hambli, Nawel
    Azzouzi, Faisal
    Bouguerra, Abdesselam
    Triki, Houria
    OPTIK, 2022, 268
  • [43] CONCENTRATION OF COUPLED CUBIC NONLINEAR SCHRDINGER EQUATIONS
    李晓光
    张健
    AppliedMathematicsandMechanics(EnglishEdition), 2005, (10) : 117 - 122
  • [44] Nanoptera in Higher-Order Nonlinear Schrödinger Equations: Effects of Discretization
    Aaron J. Moston-Duggan
    Mason A. Porter
    Christopher J. Lustri
    Journal of Nonlinear Science, 2023, 33
  • [45] Controllable rogue waves in coupled nonlinear Schrödinger equations with varying potentials and nonlinearities
    Xueping Cheng
    Jianyong Wang
    Jinyu Li
    Nonlinear Dynamics, 2014, 77 : 545 - 552
  • [46] Circular viewpoint of higher-order rogue wave structures of the nonlinear Schrödinger equation
    Ankiewicz, A.
    PHYSICA SCRIPTA, 2025, 100 (04)
  • [47] Tunneling effects of the nonautonomous rogue waves for the coupled higher-order nonlinear Schrodinger equations
    Su, Chuan-Qi
    Wang, Yong-Yan
    Li, Jian-Guang
    APPLIED MATHEMATICS LETTERS, 2017, 64 : 235 - 240
  • [48] Bright solitons for the coupled cubic-quintic non-linear Schrödinger equations
    Xi-Yang Xie
    Bo Tian
    Ya Sun
    Lei Liu
    Yan Jiang
    Optical and Quantum Electronics, 2016, 48
  • [49] Explicit, periodic and dispersive optical soliton solutions to the generalized nonlinear Schrödinger dynamical equation with higher order dispersion and cubic-quintic nonlinear terms
    Kalim U. Tariq
    Aly R. Seadawy
    Muhammad Younis
    Optical and Quantum Electronics, 2018, 50
  • [50] 1D solitons in cubic-quintic fractional nonlinear Schrödinger model
    V. A. Stephanovich
    W. Olchawa
    E. V. Kirichenko
    V. K. Dugaev
    Scientific Reports, 12