Higher-order rogue waves due to a coupled cubic-quintic nonlinear Schrödinger equations in a nonlinear electrical network

被引:1
|
作者
Djelah, Gabriel [1 ]
Ndzana, Fabien I. I. [1 ,2 ,3 ]
Abdoulkary, Saidou [1 ,4 ]
English, L. Q. [5 ]
Mohamadou, Alidou [1 ,2 ,6 ,7 ]
机构
[1] Univ Maroua, Fac Sci, Complex Syst, POB 814, Maroua, Cameroon
[2] Univ Yaounde I, Int Ctr Complex Syst, Fac Sci, POB 812, Yaounde, Cameroon
[3] Ecole Normale Super Enseignement Tech Ebolowa, BP 886, Ebolowa, Cameroon
[4] Ecole Natl Super Mines & Ind Petrolieres, Dept SF, POB 08, Kaele, Cameroon
[5] Dickinson Coll, Dept Phys & Astron, Carlisle, PA 17013 USA
[6] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[7] Abdus Salam Int Ctr Theoret Phys, POB 586,Str Costiera II, I-34014 Trieste, Italy
关键词
Nonlinear transmission lines; Coupled cubic-quintic nonlinear Schr & ouml; dinger; equations; Generalized Darboux transformation; Rogue waves; SCHRODINGER-EQUATIONS; TRANSMISSION-LINES; INTEGRABILITY;
D O I
10.1016/j.physleta.2024.129666
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a nonlinear dispersive electrical transmission network, with a CMOS varactor. Using the reductive perturbation method in semi-discrete limit, we show that the dynamics of modulated waves is governed by a pair of coupled cubic-quintic nonlinear Schr & ouml;dinger equations. Through the generalized Darboux transformation, we construct high order rogue waves solutions including pairs of first-, second- and third-order rational solutions. Our results show that the wavenumber influences the amplitude and phase of waves. We numerically show that the first and second order rogue waves are more stable than the third ones and in good agreement with the analytical results.
引用
收藏
页数:14
相关论文
共 50 条