Higher-order rogue waves due to a coupled cubic-quintic nonlinear Schrödinger equations in a nonlinear electrical network

被引:1
|
作者
Djelah, Gabriel [1 ]
Ndzana, Fabien I. I. [1 ,2 ,3 ]
Abdoulkary, Saidou [1 ,4 ]
English, L. Q. [5 ]
Mohamadou, Alidou [1 ,2 ,6 ,7 ]
机构
[1] Univ Maroua, Fac Sci, Complex Syst, POB 814, Maroua, Cameroon
[2] Univ Yaounde I, Int Ctr Complex Syst, Fac Sci, POB 812, Yaounde, Cameroon
[3] Ecole Normale Super Enseignement Tech Ebolowa, BP 886, Ebolowa, Cameroon
[4] Ecole Natl Super Mines & Ind Petrolieres, Dept SF, POB 08, Kaele, Cameroon
[5] Dickinson Coll, Dept Phys & Astron, Carlisle, PA 17013 USA
[6] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[7] Abdus Salam Int Ctr Theoret Phys, POB 586,Str Costiera II, I-34014 Trieste, Italy
关键词
Nonlinear transmission lines; Coupled cubic-quintic nonlinear Schr & ouml; dinger; equations; Generalized Darboux transformation; Rogue waves; SCHRODINGER-EQUATIONS; TRANSMISSION-LINES; INTEGRABILITY;
D O I
10.1016/j.physleta.2024.129666
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a nonlinear dispersive electrical transmission network, with a CMOS varactor. Using the reductive perturbation method in semi-discrete limit, we show that the dynamics of modulated waves is governed by a pair of coupled cubic-quintic nonlinear Schr & ouml;dinger equations. Through the generalized Darboux transformation, we construct high order rogue waves solutions including pairs of first-, second- and third-order rational solutions. Our results show that the wavenumber influences the amplitude and phase of waves. We numerically show that the first and second order rogue waves are more stable than the third ones and in good agreement with the analytical results.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Rogue waves on the double-periodic background for a nonlinear Schrödinger equation with higher-order effects
    Hai-Qiang Zhang
    Rui Liu
    Fa Chen
    Nonlinear Dynamics, 2023, 111 : 645 - 654
  • [32] Controllable rogue waves on the Jacobi-periodic background for the higher-order nonlinear Schrödinger equation
    Huang, Lili
    Yue, Yunfei
    NONLINEAR DYNAMICS, 2024, 112 (18) : 16339 - 16353
  • [33] Rogue waves dynamics of cubic-quintic nonlinear Schro;dinger equation with an external linear potential through a modified Noguchi electrical transmission network
    Djelah, Gabriel
    Ndzana, Fabien, II
    Abdoulkary, Saidou
    Mohamadou, Alidou
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 126
  • [34] The cubic-quintic nonlinear Schrödinger equation with inverse-square potential
    Ardila, Alex H.
    Murphy, Jason
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (05):
  • [35] High-order optical rogue waves in two coherently coupled nonlinear Schrödinger equations
    Qi, Juan-Juan
    Wang, Deng-Shan
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 472
  • [36] Breather interactions, higher-order rogue waves and nonlinear tunneling for a derivative nonlinear Schrödinger equation in inhomogeneous nonlinear optics and plasmas
    Lei Wang
    Min Li
    Feng-Hua Qi
    Chao Geng
    The European Physical Journal D, 2015, 69
  • [37] A finite difference scheme for (2+1)D cubic-quintic nonlinear Schrödinger equations with nonlinear damping
    Ha Le, Anh
    Huynh, Toan T.
    Nguyen, Quan M.
    APPLIED NUMERICAL MATHEMATICS, 2024, 205 : 215 - 239
  • [38] Analytical soliton solutions for the (2 + 1)-perturbed and higher order cubic–quintic nonlinear Schrödinger equations
    Rafiq Ahmad
    Ahmad Javid
    Optical and Quantum Electronics, 2023, 55
  • [39] Dynamics of dark solitons in optical fibers governed by cubic-quintic discrete nonlinear Schrödinger equations
    Qausar, Haves
    Ramli, Marwan
    Munzir, Said
    Syafwan, Mahdhivan
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2024, 11 (11): : 142 - 155
  • [40] Rogue Waves in the Generalized Derivative Nonlinear Schrödinger Equations
    Bo Yang
    Junchao Chen
    Jianke Yang
    Journal of Nonlinear Science, 2020, 30 : 3027 - 3056