Cyclicity of slow-fast cycles with two canard mechanisms

被引:2
|
作者
Yao, Jinhui [1 ]
Huang, Jicai [1 ]
Huzak, Renato [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
[2] Hasselt Univ, Dept Math & Stat, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
基金
中国国家自然科学基金;
关键词
MODIFIED LESLIE-GOWER; SINGULAR PERTURBATION-THEORY; PREDATOR-PREY SYSTEMS; SMOOTHNESS; MANIFOLDS; STABILITY; DELAY; MODEL;
D O I
10.1063/5.0201887
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the cyclicity of some degenerate slow-fast cycles with two canard mechanisms in planar slow-fast systems. One canard mechanism originates from a slow-fast Hopf point and the other from a point of self-intersection where the so-called entry-exit relation can be used. By studying the difference map, we show that the cyclicity of such slow-fast cycles is at most two (the associated slow divergence integral is nonzero or vanishes). As an example, we apply this result to the modified Holling-Tanner model.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] SYNCHRONY IN SLOW-FAST METACOMMUNITIES
    Rinaldi, Sergio
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (07): : 2447 - 2453
  • [32] Practical coexistence of two species in the chemostat - A slow-fast characterization
    El Hajji, Miled
    Rapaport, Alain
    MATHEMATICAL BIOSCIENCES, 2009, 218 (01) : 33 - 39
  • [33] Canard cycles in the presence of slow dynamics with singularities
    De Maesschalck, P.
    Dumortier, F.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2008, 138 : 265 - 299
  • [34] Slow foliation of a slow-fast stochastic evolutionary system
    Chen, Guanggan
    Duan, Jinqiao
    Zhang, Jian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (08) : 2663 - 2697
  • [35] Recurrence analysis of slow-fast systems
    Kasthuri, Praveen
    Pavithran, Induja
    Krishnan, Abin
    Pawar, Samadhan A.
    Sujith, R. I.
    Gejji, Rohan
    Anderson, William
    Marwan, Norbert
    Kurths, Juergen
    CHAOS, 2020, 30 (06)
  • [36] Relaxation oscillation and canard explosion in a slow-fast predator-prey model with Beddington-DeAngelis functional response
    Saha, Tapan
    Pal, Pallav Jyoti
    Banerjee, Malay
    NONLINEAR DYNAMICS, 2021, 103 (01) : 1195 - 1217
  • [37] Slow-fast dynamics in Josephson junctions
    Neumann, E
    Pikovsky, A
    EUROPEAN PHYSICAL JOURNAL B, 2003, 34 (03): : 293 - 303
  • [38] Slow Invariant Manifolds of Slow-Fast Dynamical Systems
    Ginoux, Jean-Marc
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (07):
  • [39] Drift of slow variables in slow-fast Hamiltonian systems
    Brannstrom, N.
    Gelfreich, V.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (22) : 2913 - 2921
  • [40] Quadratic slow-fast systems on the plane
    Meza-Sarmiento, Ingrid S.
    Oliveira, Regilene
    Silva, Paulo R. da
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 60