Cyclicity of slow-fast cycles with two canard mechanisms

被引:2
|
作者
Yao, Jinhui [1 ]
Huang, Jicai [1 ]
Huzak, Renato [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
[2] Hasselt Univ, Dept Math & Stat, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
基金
中国国家自然科学基金;
关键词
MODIFIED LESLIE-GOWER; SINGULAR PERTURBATION-THEORY; PREDATOR-PREY SYSTEMS; SMOOTHNESS; MANIFOLDS; STABILITY; DELAY; MODEL;
D O I
10.1063/5.0201887
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the cyclicity of some degenerate slow-fast cycles with two canard mechanisms in planar slow-fast systems. One canard mechanism originates from a slow-fast Hopf point and the other from a point of self-intersection where the so-called entry-exit relation can be used. By studying the difference map, we show that the cyclicity of such slow-fast cycles is at most two (the associated slow divergence integral is nonzero or vanishes). As an example, we apply this result to the modified Holling-Tanner model.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Super-Explosion and Inverse Canard Explosion in a Piecewise-Smooth Slow-Fast Leslie-Gower Model
    Zhang, Huiping
    Cai, Yuhua
    Shen, Jianhe
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (02)
  • [42] Equilibration of energy in slow-fast systems
    Shah, Kushal
    Turaev, Dmitry
    Gelfreich, Vassili
    Rom-Kedar, Vered
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (49) : E10514 - E10523
  • [43] Slow-fast autonomous dynamical systems
    Rossetto, B
    Lenzini, T
    Ramdani, S
    Suchey, G
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11): : 2135 - 2145
  • [44] Destabilizing factors in slow-fast systems
    Rinaldi, S
    Gragnani, A
    ECOLOGICAL MODELLING, 2004, 180 (04) : 445 - 460
  • [45] Slow-fast dynamics in Josephson junctions
    E. Neumann
    A. Pikovsky
    The European Physical Journal B - Condensed Matter and Complex Systems, 2003, 34 : 293 - 303
  • [46] Canard cycles with two breaking parameters
    Dumortier, Freddy
    Roussarie, Robert
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 17 (04) : 787 - 806
  • [48] Detection of slow-fast limit cycles in a model for electrical activity in the pancreatic beta-cell
    Lenbury, Y
    Kumnungkit, K
    Novaprateep, B
    IMA JOURNAL OF MATHEMATICS APPLIED IN MEDICINE AND BIOLOGY, 1996, 13 (01): : 1 - 21
  • [49] Slow manifold and averaging for slow-fast stochastic differential system
    Wang, W.
    Roberts, A. J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 398 (02) : 822 - 839
  • [50] Computing two-dimensional global invariant manifolds in slow-fast systems
    England, J. P.
    Krauskopf, B.
    Osinga, H. M.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (03): : 805 - 822