Cyclicity of slow-fast cycles with two canard mechanisms

被引:2
|
作者
Yao, Jinhui [1 ]
Huang, Jicai [1 ]
Huzak, Renato [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
[2] Hasselt Univ, Dept Math & Stat, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
基金
中国国家自然科学基金;
关键词
MODIFIED LESLIE-GOWER; SINGULAR PERTURBATION-THEORY; PREDATOR-PREY SYSTEMS; SMOOTHNESS; MANIFOLDS; STABILITY; DELAY; MODEL;
D O I
10.1063/5.0201887
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the cyclicity of some degenerate slow-fast cycles with two canard mechanisms in planar slow-fast systems. One canard mechanism originates from a slow-fast Hopf point and the other from a point of self-intersection where the so-called entry-exit relation can be used. By studying the difference map, we show that the cyclicity of such slow-fast cycles is at most two (the associated slow divergence integral is nonzero or vanishes). As an example, we apply this result to the modified Holling-Tanner model.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] CANARD CYCLES OF FAST-SLOW FIELDS WITH ONE-DIMENSIONAL SLOW COMPONENT
    BELIKOV, SA
    SAMBORSKII, SN
    MATHEMATICAL NOTES, 1991, 49 (3-4) : 339 - 346
  • [22] Emergence of Canard induced mixed mode oscillations in a slow-fast dynamics of a biophysical excitable model
    Sharma, Sanjeev Kumar
    Mondal, Arnab
    Mondal, Argha
    Aziz-Alaoui, M. A.
    Upadhyay, Ranjit Kumar
    Ma, Jun
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [23] Canard resonance: on noise-induced ordering of trajectories in heterogeneous networks of slow-fast systems
    D'Huys, Otti
    Veltz, Romain
    Dolcemascolo, Axel
    Marino, Francesco
    Barland, Stephane
    JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (02):
  • [24] A SEPARATION CONDITION FOR THE EXISTENCE OF LIMIT-CYCLES IN SLOW-FAST SYSTEMS
    MURATORI, S
    RINALDI, S
    APPLIED MATHEMATICAL MODELLING, 1991, 15 (06) : 312 - 318
  • [25] Limit cycles in slow-fast codimension 3 saddle and elliptic bifurcations
    Huzak, R.
    De Maesschalck, P.
    Dumortier, F.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) : 4012 - 4051
  • [27] Synchronization of slow-fast systems
    I. Omelchenko
    M. Rosenblum
    A. Pikovsky
    The European Physical Journal Special Topics, 2010, 191 : 3 - 14
  • [28] Fractal dimensions and two-dimensional slow-fast systems
    Huzak, Renato
    Crnkovic, Vlatko
    Vlah, Domagoj
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (02)
  • [29] Synchronization of slow-fast systems
    Omelchenko, I.
    Rosenblum, M.
    Pikovsky, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 191 (01): : 3 - 14
  • [30] Slow-fast torus knots
    Huzak, Renato
    Jardon-Kojakhmetov, Hildeberto
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 29 (03) : 371 - 388