Slow-fast torus knots

被引:0
|
作者
Huzak, Renato [1 ]
Jardon-Kojakhmetov, Hildeberto [2 ]
机构
[1] Hasselt Univ, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
[2] Univ Groningen, Fac Sci & Engn, Dynam Syst Geometry & Math Phys, Bernoulli Inst, Nijenborgh 9, NL-9747 AG Groningen, Netherlands
关键词
Slow-fast systems; torus knots; limit cycles; slow divergence integral; CANARD CYCLES; THEOREM; DUCK;
D O I
10.36045/j.bbms.220208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study global dynamics of C degrees degrees-smooth slow-fast systems on the 2-torus of class C degrees degrees using geometric singular perturbation theory and the notion of slow divergence integral. Given any m is an element of N and two relatively prime integers k and l, we show that there exists a slow-fast system Ye on the 2-torus that has a 2m-link of type (k, l), i.e. a (disjoint fi-nite) union of 2m slow-fast limit cycles each of (k, l)-torus knot type, for all small e > 0. The (k, l)-torus knot turns around the 2-torus k times merid-ionally and l times longitudinally. There are exactly m repelling limit cycles and m attracting limit cycles. Our analysis: a) proves the case of normally hyperbolic singular knots, and b) provides sufficient evidence to conjecture a similar result in some cases where the singular knots have regular nilpotent contact with the fast foliation.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 50 条
  • [1] Synchronization of slow-fast systems
    I. Omelchenko
    M. Rosenblum
    A. Pikovsky
    [J]. The European Physical Journal Special Topics, 2010, 191 : 3 - 14
  • [2] Synchronization of slow-fast systems
    Omelchenko, I.
    Rosenblum, M.
    Pikovsky, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 191 (01): : 3 - 14
  • [3] SYNCHRONY IN SLOW-FAST METACOMMUNITIES
    Rinaldi, Sergio
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (07): : 2447 - 2453
  • [4] DUCK FARMING ON THE TWO-TORUS: MULTIPLE CANARD CYCLES IN GENERIC SLOW-FAST SYSTEMS
    Schurov, Ilya
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 : 1289 - 1298
  • [5] Modified slow-fast analysis method for slow-fast dynamical systems with two scales in frequency domain
    Zhengdi Zhang
    Zhangyao Chen
    Qinsheng Bi
    [J]. Theoretical & Applied Mechanics Letters, 2019, 9 (06) : 358 - 362
  • [6] Modified slow-fast analysis method for slow-fast dynamical systems with two scales in frequency domain
    Zhang, Zhengdi
    Chen, Zhangyao
    Bi, Qinsheng
    [J]. THEORETICAL AND APPLIED MECHANICS LETTERS, 2019, 9 (06) : 358 - 362
  • [7] Cyclicity of common slow-fast cycles
    De Maesschalck, P.
    Dumortier, F.
    Roussarie, R.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2011, 22 (3-4): : 165 - 206
  • [8] Slow foliation of a slow-fast stochastic evolutionary system
    Chen, Guanggan
    Duan, Jinqiao
    Zhang, Jian
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (08) : 2663 - 2697
  • [9] Recurrence analysis of slow-fast systems
    Kasthuri, Praveen
    Pavithran, Induja
    Krishnan, Abin
    Pawar, Samadhan A.
    Sujith, R. I.
    Gejji, Rohan
    Anderson, William
    Marwan, Norbert
    Kurths, Juergen
    [J]. CHAOS, 2020, 30 (06)
  • [10] Drift of slow variables in slow-fast Hamiltonian systems
    Brannstrom, N.
    Gelfreich, V.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (22) : 2913 - 2921