Slow-fast torus knots

被引:0
|
作者
Huzak, Renato [1 ]
Jardon-Kojakhmetov, Hildeberto [2 ]
机构
[1] Hasselt Univ, Campus Diepenbeek,Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium
[2] Univ Groningen, Fac Sci & Engn, Dynam Syst Geometry & Math Phys, Bernoulli Inst, Nijenborgh 9, NL-9747 AG Groningen, Netherlands
关键词
Slow-fast systems; torus knots; limit cycles; slow divergence integral; CANARD CYCLES; THEOREM; DUCK;
D O I
10.36045/j.bbms.220208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study global dynamics of C degrees degrees-smooth slow-fast systems on the 2-torus of class C degrees degrees using geometric singular perturbation theory and the notion of slow divergence integral. Given any m is an element of N and two relatively prime integers k and l, we show that there exists a slow-fast system Ye on the 2-torus that has a 2m-link of type (k, l), i.e. a (disjoint fi-nite) union of 2m slow-fast limit cycles each of (k, l)-torus knot type, for all small e > 0. The (k, l)-torus knot turns around the 2-torus k times merid-ionally and l times longitudinally. There are exactly m repelling limit cycles and m attracting limit cycles. Our analysis: a) proves the case of normally hyperbolic singular knots, and b) provides sufficient evidence to conjecture a similar result in some cases where the singular knots have regular nilpotent contact with the fast foliation.
引用
收藏
页码:371 / 388
页数:18
相关论文
共 50 条
  • [21] Slow-Fast Systems with an Equilibrium Near the Folded Slow Manifold
    Gelfreikh, Natalia G.
    Ivanov, Alexey V.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2024, 29 (02): : 376 - 403
  • [22] Slow-Fast Systems with an Equilibrium Near the Folded Slow Manifold
    Natalia G. Gelfreikh
    Alexey V. Ivanov
    [J]. Regular and Chaotic Dynamics, 2024, 29 : 376 - 403
  • [23] SLOW-FAST AUDITORY STREAMS FOR AUDIO RECOGNITION
    Kazakos, Evangelos
    Nagrani, Arsha
    Zisserman, Andrew
    Damen, Dima
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 855 - 859
  • [24] Slow-Fast Duffing Neural Mass Model
    Jafarian, Amirhossein
    Freestone, Dean R.
    Nesic, Dragan
    Grayden, David B.
    [J]. 2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 142 - 145
  • [25] Torus knots obtained by twisting torus knots
    Lee, Sangyop
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (05): : 2819 - 2838
  • [26] The Poincare maps of a slow-fast stochastic system
    Yang, Min
    Chen, Guanggan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 345 : 130 - 160
  • [27] Diffusion Limit for a Slow-Fast Standard Map
    Alex Blumenthal
    Jacopo De Simoi
    Ke Zhang
    [J]. Communications in Mathematical Physics, 2020, 374 : 187 - 210
  • [28] Slow-Fast Dynamical Systems with a Load Variation
    Savenkova, Elena
    Vakulenko, Sergey
    Sudakow, Ivan
    [J]. MATHEMATICAL MODELING IN PHYSICAL SCIENCES, IC-MSQUARE 2023, 2024, 446 : 255 - 265
  • [29] Separatrix Maps in Slow-Fast Hamiltonian Systems
    Bolotin, Sergey V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 322 (01) : 32 - 51
  • [30] Piecewise-Smooth Slow-Fast Systems
    da Silva, Paulo R.
    de Moraes, Jaime R.
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2021, 27 (01) : 67 - 85