Drift of slow variables in slow-fast Hamiltonian systems

被引:8
|
作者
Brannstrom, N. [1 ]
Gelfreich, V. [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
Slow-fast systems; Normal hyperbolicity; Heteroclinic;
D O I
10.1016/j.physd.2008.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the drift of slow variables in a slow-fast Hamiltonian system with several fast and slow degrees of freedom. Keeping the slow variables frozen, for any periodic trajectory of the fast subsystem we define an action. For a family of periodic orbits, the action is a scalar function of the slow variables and can be considered as a Hamiltonian function which generates some slow dynamics. These dynamics depend on the family of periodic orbits. Assuming that for the frozen slow variables the fast system has a pair of hyperbolic periodic orbits connected by two transversal heteroclinic trajectories, we prove that for any path composed of a finite sequence of slow trajectories generated by action Hamiltonians, there is a trajectory of the full system whose slow component shadows the path. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2913 / 2921
页数:9
相关论文
共 50 条
  • [1] Separatrix Maps in Slow-Fast Hamiltonian Systems
    Bolotin, Sergey V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 322 (01) : 32 - 51
  • [2] Geometric shadowing in slow-fast Hamiltonian systems
    Brannstrom, Niklas
    de Simone, Emiliano
    Gelfreich, Vassili
    [J]. NONLINEARITY, 2010, 23 (05) : 1169 - 1184
  • [3] On Phase at a Resonance in Slow-Fast Hamiltonian Systems
    Gao Y.
    Neishtadt A.
    Okunev A.
    [J]. Regular and Chaotic Dynamics, 2023, 28 (4-5) : 585 - 612
  • [4] Heteroclinic Orbits in Slow-Fast Hamiltonian Systems with Slow Manifold Bifurcations
    Schecter, Stephen
    Sourdis, Christos
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (04) : 629 - 655
  • [5] Rapid geometrical chaotization in slow-fast Hamiltonian systems
    Artemyev, A. V.
    Neishtadt, A. I.
    Zelenyi, L. M.
    [J]. PHYSICAL REVIEW E, 2014, 89 (06):
  • [6] On Integrable Models Close To Slow-Fast Hamiltonian Systems
    M. Avendaño-Camacho
    N. Mamani-Alegria
    Y. Vorobiev
    [J]. Lobachevskii Journal of Mathematics, 2022, 43 : 21 - 34
  • [7] Geometry of slow-fast Hamiltonian systems and Painleve equations
    Lerman, L. M.
    Yakovlev, E. I.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (05): : 1219 - 1244
  • [8] On Integrable Models Close To Slow-Fast Hamiltonian Systems
    Avendano-Camacho, M.
    Mamani-Alegria, N.
    Vorobiev, Y.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 21 - 34
  • [9] On the global structure of normal forms for slow-fast Hamiltonian systems
    Avendano Camacho, M.
    Vorobiev, Yu
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2013, 20 (02) : 138 - 148
  • [10] On the global structure of normal forms for slow-fast Hamiltonian systems
    M. Avendaño Camacho
    Yu. Vorobiev
    [J]. Russian Journal of Mathematical Physics, 2013, 20 : 138 - 148