Geometric shadowing in slow-fast Hamiltonian systems

被引:3
|
作者
Brannstrom, Niklas [1 ]
de Simone, Emiliano [1 ]
Gelfreich, Vassili [2 ]
机构
[1] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
[2] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
基金
芬兰科学院;
关键词
D O I
10.1088/0951-7715/23/5/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of slow-fast Hamiltonian systems with any finite number of degrees of freedom, but with at least one slow one and two fast ones. At epsilon = 0 the slow dynamics is frozen. We assume that the frozen system (i.e. the unperturbed fast dynamics) has families of hyperbolic periodic orbits with transversal heteroclinics. For each periodic orbit we define an action J. This action may be viewed as an action Hamiltonian (in the slow variables). It has been shown in Brannstrom and Gelfreich (2008 Physica D 237 2913-21) that there are orbits of the full dynamics which shadow any finite combination of forward orbits of J for a time t = O(epsilon(-1)). We introduce an assumption on the actions of periodic orbits which enables us to shadow any continuous curve (of arbitrary length) in the slow phase space for any time. The slow dynamics shadows the curve as a purely geometrical object, thus the time on the slow dynamics has to be reparametrized.
引用
收藏
页码:1169 / 1184
页数:16
相关论文
共 50 条
  • [1] Drift of slow variables in slow-fast Hamiltonian systems
    Brannstrom, N.
    Gelfreich, V.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (22) : 2913 - 2921
  • [2] Separatrix Maps in Slow-Fast Hamiltonian Systems
    Bolotin, Sergey V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 322 (01) : 32 - 51
  • [3] On Phase at a Resonance in Slow-Fast Hamiltonian Systems
    Gao Y.
    Neishtadt A.
    Okunev A.
    [J]. Regular and Chaotic Dynamics, 2023, 28 (4-5) : 585 - 612
  • [4] On Integrable Models Close To Slow-Fast Hamiltonian Systems
    M. Avendaño-Camacho
    N. Mamani-Alegria
    Y. Vorobiev
    [J]. Lobachevskii Journal of Mathematics, 2022, 43 : 21 - 34
  • [5] Rapid geometrical chaotization in slow-fast Hamiltonian systems
    Artemyev, A. V.
    Neishtadt, A. I.
    Zelenyi, L. M.
    [J]. PHYSICAL REVIEW E, 2014, 89 (06):
  • [6] Geometry of slow-fast Hamiltonian systems and Painleve equations
    Lerman, L. M.
    Yakovlev, E. I.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (05): : 1219 - 1244
  • [7] On Integrable Models Close To Slow-Fast Hamiltonian Systems
    Avendano-Camacho, M.
    Mamani-Alegria, N.
    Vorobiev, Y.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 21 - 34
  • [8] Heteroclinic Orbits in Slow-Fast Hamiltonian Systems with Slow Manifold Bifurcations
    Schecter, Stephen
    Sourdis, Christos
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (04) : 629 - 655
  • [9] On the global structure of normal forms for slow-fast Hamiltonian systems
    Avendano Camacho, M.
    Vorobiev, Yu
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2013, 20 (02) : 138 - 148
  • [10] On the global structure of normal forms for slow-fast Hamiltonian systems
    M. Avendaño Camacho
    Yu. Vorobiev
    [J]. Russian Journal of Mathematical Physics, 2013, 20 : 138 - 148