On Integrable Models Close To Slow-Fast Hamiltonian Systems

被引:0
|
作者
M. Avendaño-Camacho
N. Mamani-Alegria
Y. Vorobiev
机构
[1] Deparment of Mathematics,
[2] University of Sonora,undefined
[3] Boulevard Luis Encinas y Rosales,undefined
[4] Col. Centro,undefined
来源
关键词
slow-fast Hamiltonian system; averaging method; normal form theory; integrable model; improved first integral; -actions;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:21 / 34
页数:13
相关论文
共 50 条
  • [1] On Integrable Models Close To Slow-Fast Hamiltonian Systems
    Avendano-Camacho, M.
    Mamani-Alegria, N.
    Vorobiev, Y.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (01) : 21 - 34
  • [2] Drift of slow variables in slow-fast Hamiltonian systems
    Brannstrom, N.
    Gelfreich, V.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (22) : 2913 - 2921
  • [3] Separatrix Maps in Slow-Fast Hamiltonian Systems
    Bolotin, Sergey V.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 322 (01) : 32 - 51
  • [4] Geometric shadowing in slow-fast Hamiltonian systems
    Brannstrom, Niklas
    de Simone, Emiliano
    Gelfreich, Vassili
    [J]. NONLINEARITY, 2010, 23 (05) : 1169 - 1184
  • [5] On Phase at a Resonance in Slow-Fast Hamiltonian Systems
    Gao Y.
    Neishtadt A.
    Okunev A.
    [J]. Regular and Chaotic Dynamics, 2023, 28 (4-5) : 585 - 612
  • [6] Rapid geometrical chaotization in slow-fast Hamiltonian systems
    Artemyev, A. V.
    Neishtadt, A. I.
    Zelenyi, L. M.
    [J]. PHYSICAL REVIEW E, 2014, 89 (06):
  • [7] Geometry of slow-fast Hamiltonian systems and Painleve equations
    Lerman, L. M.
    Yakovlev, E. I.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (05): : 1219 - 1244
  • [8] Heteroclinic Orbits in Slow-Fast Hamiltonian Systems with Slow Manifold Bifurcations
    Schecter, Stephen
    Sourdis, Christos
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (04) : 629 - 655
  • [9] On the global structure of normal forms for slow-fast Hamiltonian systems
    Avendano Camacho, M.
    Vorobiev, Yu
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2013, 20 (02) : 138 - 148
  • [10] On the global structure of normal forms for slow-fast Hamiltonian systems
    M. Avendaño Camacho
    Yu. Vorobiev
    [J]. Russian Journal of Mathematical Physics, 2013, 20 : 138 - 148