A One-Stage Approach for the Spatio-temporal Analysis of High-Throughput Phenotyping Data

被引:0
|
作者
Perez-Valencia, Diana Marcela [1 ,2 ]
Rodriguez-Alvarez, Maria Xose [3 ,4 ]
Boer, Martin P. [5 ]
van Eeuwijk, Fred A. [5 ]
机构
[1] BCAM Basque Ctr Appl Math, Bilbao 48009, Spain
[2] Univ Pais Vasco UPV, Dept Matemat, EHU, Leioa 48940, Spain
[3] Univ Vigo, Dept Stat & Operat Res, Vigo 36310, Spain
[4] CITMAga Ctr Invest & Tecnol Matemat Galicia, Santiago De Compostela 15782, Spain
[5] Wageningen Univ & Res, Biometris, NL-6708 PB Wageningen, Netherlands
关键词
Longitudinal analysis; Mixed models; Multidimensional P-splines; Plant breeding; Plant physiology; Sparse structure; FIELD EXPERIMENTS; P-SPLINES; MODELS;
D O I
10.1007/s13253-024-00642-w
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work is motivated by the need to accurately estimate genetic effects over time when analysing data from high-throughput phenotyping (HTP) experiments. The HTP data we deal with here are characterised by phenotypic traits measured multiple times in the presence of spatial and temporal noise and a hierarchical organisation at three levels (populations, genotypes within populations, and plants within genotypes). We propose a feasible one-stage spatio-temporal P-spline-based hierarchical approach to model the evolution of the genetic signal over time on a given phenotype while accounting for spatio-temporal noise and experimental design and/or post-blocking factors. We provide the user with appealing tools that take advantage of the sparse model matrices structure to reduce computational complexity. We illustrate the performance of our method using spatio-temporal simulated data and data from the PhenoArch greenhouse platform at INRAE Montpellier. In the plant breeding context, we show that information extracted for selection purposes from our fitted genotypic curves is similar to that obtained using a comparable two-stage P-spline-based approach.Supplementary materials accompanying this paper appear on-line.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A two-stage approach for the spatio-temporal analysis of high-throughput phenotyping data
    Perez-Valencia, Diana M.
    Xose Rodriguez-Alvarez, Maria
    Boer, Martin P.
    Kronenberg, Lukas
    Hund, Andreas
    Cabrera-Bosquet, Llorenc
    Millet, Emilie J.
    van Eeuwijk, Fred A.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] A two-stage approach for the spatio-temporal analysis of high-throughput phenotyping data
    Diana M. Pérez-Valencia
    María Xosé Rodríguez-Álvarez
    Martin P. Boer
    Lukas Kronenberg
    Andreas Hund
    Llorenç Cabrera-Bosquet
    Emilie J. Millet
    Fred A. van Eeuwijk
    [J]. Scientific Reports, 12
  • [3] Modelling temporal genetic and spatio-temporal residual effects for high-throughput phenotyping data
    Verbyla, A. P.
    De Faveri, J.
    Deery, D. M.
    Rebetzke, G. J.
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (02) : 284 - 308
  • [4] High-throughput analysis of spatio-temporal dynamics in Dictyostelium
    Satoshi Sawai
    Xiao-Juan Guan
    Adam Kuspa
    Edward C Cox
    [J]. Genome Biology, 8
  • [5] High-throughput analysis of spatio-temporal dynamics in Dictyostelium
    Sawai, Satoshi
    Guan, Xiao-Juan
    Kuspa, Adam
    Cox, Edward C.
    [J]. GENOME BIOLOGY, 2007, 8 (07)
  • [6] Embracing Consistency: A One-Stage Approach for Spatio-Temporal Video Grounding
    Jin, Yang
    Li, Yongzhi
    Yuan, Zehuan
    Mu, Yadong
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] High-throughput phenotyping with temporal sequences
    Estiri, Hossein
    Strasser, Zachary H.
    Murphy, Shawn N.
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2021, 28 (04) : 772 - 781
  • [8] High-throughput, subpixel precision analysis of bacterial morphogenesis and intracellular spatio-temporal dynamics
    Sliusarenko, Oleksii
    Heinritz, Jennifer
    Emonet, Thierry
    Jacobs-Wagner, Christine
    [J]. MOLECULAR MICROBIOLOGY, 2011, 80 (03) : 612 - 627
  • [9] SpaTemHTP: A Data Analysis Pipeline for Efficient Processing and Utilization of Temporal High-Throughput Phenotyping Data
    Kar, Soumyashree
    Garin, Vincent
    Kholova, Jana
    Vadez, Vincent
    Durbha, Surya S.
    Tanaka, Ryokei
    Iwata, Hiroyoshi
    Urban, Milan O.
    Adinarayana, J.
    [J]. FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [10] A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data
    Combrexelle, S.
    Wendt, H.
    Tourneret, J. -Y.
    Altmann, Y.
    McLaughlin, S.
    Abry, P.
    [J]. PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, (IWSSIP 2016), 2016, : 331 - 334