A One-Stage Approach for the Spatio-temporal Analysis of High-Throughput Phenotyping Data

被引:0
|
作者
Perez-Valencia, Diana Marcela [1 ,2 ]
Rodriguez-Alvarez, Maria Xose [3 ,4 ]
Boer, Martin P. [5 ]
van Eeuwijk, Fred A. [5 ]
机构
[1] BCAM Basque Ctr Appl Math, Bilbao 48009, Spain
[2] Univ Pais Vasco UPV, Dept Matemat, EHU, Leioa 48940, Spain
[3] Univ Vigo, Dept Stat & Operat Res, Vigo 36310, Spain
[4] CITMAga Ctr Invest & Tecnol Matemat Galicia, Santiago De Compostela 15782, Spain
[5] Wageningen Univ & Res, Biometris, NL-6708 PB Wageningen, Netherlands
关键词
Longitudinal analysis; Mixed models; Multidimensional P-splines; Plant breeding; Plant physiology; Sparse structure; FIELD EXPERIMENTS; P-SPLINES; MODELS;
D O I
10.1007/s13253-024-00642-w
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work is motivated by the need to accurately estimate genetic effects over time when analysing data from high-throughput phenotyping (HTP) experiments. The HTP data we deal with here are characterised by phenotypic traits measured multiple times in the presence of spatial and temporal noise and a hierarchical organisation at three levels (populations, genotypes within populations, and plants within genotypes). We propose a feasible one-stage spatio-temporal P-spline-based hierarchical approach to model the evolution of the genetic signal over time on a given phenotype while accounting for spatio-temporal noise and experimental design and/or post-blocking factors. We provide the user with appealing tools that take advantage of the sparse model matrices structure to reduce computational complexity. We illustrate the performance of our method using spatio-temporal simulated data and data from the PhenoArch greenhouse platform at INRAE Montpellier. In the plant breeding context, we show that information extracted for selection purposes from our fitted genotypic curves is similar to that obtained using a comparable two-stage P-spline-based approach.Supplementary materials accompanying this paper appear on-line.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Visual analysis on high dimensional spatio-temporal real estate data
    [J]. Liang, R. (rhliang@zjut.edu.cn), 1600, Institute of Computing Technology (25):
  • [22] Multiscale recurrence analysis of spatio-temporal data
    Riedl, M.
    Marwan, N.
    Kurths, J.
    [J]. CHAOS, 2015, 25 (12)
  • [23] Spatio-Temporal Analysis for Smart City Data
    Bermudez-Edo, Maria
    Barnaghi, Payam
    [J]. COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1841 - 1845
  • [24] Data analysis and processing for spatio-temporal forecasting
    Lee, Hyoungwoo
    Choo, Jaegul
    [J]. 20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 737 - 739
  • [25] Dimensionality Reduction of High-throughput Phenotyping Data in Cotton Fields
    Issac, Amanda
    Yadav, Himani
    Rains, Glen
    Velni, Javad Mohammadpour
    [J]. IFAC PAPERSONLINE, 2022, 55 (32): : 153 - 158
  • [26] Interactive exploratory analysis of spatio-temporal data
    Dreesman, JM
    [J]. COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 407 - 412
  • [27] Fuzzy cluster analysis of spatio-temporal data
    Liu, ZJ
    George, R
    [J]. COMPUTER AND INFORMATION SCIENCES - ISCIS 2003, 2003, 2869 : 984 - 991
  • [28] AIRSTD: An Approach for Indexing and Retrieving Spatio-Temporal Data
    Halaoui, Hatem F.
    [J]. ADVANCED INTERNET BASED SYSTEMS AND APPLICATIONS, 2009, 4879 : 80 - 90
  • [29] An Enhanced Imputation Approach for Spatio-Temporal Clinical Data
    Yin, Yilin
    Chou, Chun-An
    [J]. 2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 813 - 818
  • [30] A statistical modeling approach for spatio-temporal degradation data
    Liu, Xiao
    Yeo, Kyongmin
    Kalagnanam, Jayant
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2018, 50 (02) : 166 - 182