A One-Stage Approach for the Spatio-temporal Analysis of High-Throughput Phenotyping Data

被引:0
|
作者
Perez-Valencia, Diana Marcela [1 ,2 ]
Rodriguez-Alvarez, Maria Xose [3 ,4 ]
Boer, Martin P. [5 ]
van Eeuwijk, Fred A. [5 ]
机构
[1] BCAM Basque Ctr Appl Math, Bilbao 48009, Spain
[2] Univ Pais Vasco UPV, Dept Matemat, EHU, Leioa 48940, Spain
[3] Univ Vigo, Dept Stat & Operat Res, Vigo 36310, Spain
[4] CITMAga Ctr Invest & Tecnol Matemat Galicia, Santiago De Compostela 15782, Spain
[5] Wageningen Univ & Res, Biometris, NL-6708 PB Wageningen, Netherlands
关键词
Longitudinal analysis; Mixed models; Multidimensional P-splines; Plant breeding; Plant physiology; Sparse structure; FIELD EXPERIMENTS; P-SPLINES; MODELS;
D O I
10.1007/s13253-024-00642-w
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work is motivated by the need to accurately estimate genetic effects over time when analysing data from high-throughput phenotyping (HTP) experiments. The HTP data we deal with here are characterised by phenotypic traits measured multiple times in the presence of spatial and temporal noise and a hierarchical organisation at three levels (populations, genotypes within populations, and plants within genotypes). We propose a feasible one-stage spatio-temporal P-spline-based hierarchical approach to model the evolution of the genetic signal over time on a given phenotype while accounting for spatio-temporal noise and experimental design and/or post-blocking factors. We provide the user with appealing tools that take advantage of the sparse model matrices structure to reduce computational complexity. We illustrate the performance of our method using spatio-temporal simulated data and data from the PhenoArch greenhouse platform at INRAE Montpellier. In the plant breeding context, we show that information extracted for selection purposes from our fitted genotypic curves is similar to that obtained using a comparable two-stage P-spline-based approach.Supplementary materials accompanying this paper appear on-line.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Scalable spatio-temporal Bayesian analysis of high-dimensional electroencephalography data
    Mohammed, Shariq
    Dey, Dipak K.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (01): : 107 - 128
  • [42] A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping
    Dobos, Orsolya
    Horvath, Peter
    Nagy, Ferenc
    Danka, Tivadar
    Viczian, Andras
    [J]. PLANT PHYSIOLOGY, 2019, 181 (04) : 1415 - 1424
  • [43] A new covariance function for spatio-temporal data analysis
    Rao, Tata Subba
    Terdik, Gyorgy
    [J]. INTERNATIONAL WORK-CONFERENCE ON TIME SERIES (ITISE 2014), 2014, : 64 - 66
  • [44] Effective spatio-temporal analysis of remote sensing data
    Zhang, Zhongnan
    Wu, Weili
    Huang, Yaochun
    [J]. PROGRESS IN WWW RESEARCH AND DEVELOPMENT, PROCEEDINGS, 2008, 4976 : 584 - 589
  • [45] Spatio-temporal analysis of Salmonella surveillance data in Thailand
    Domingues, A. R.
    Vieira, A. R.
    Hendriksen, R. S.
    Pulsrikarn, C.
    Aarestrup, F. M.
    [J]. EPIDEMIOLOGY AND INFECTION, 2014, 142 (08): : 1614 - 1624
  • [46] Exploratory spatio-temporal analysis of linked statistical data
    Mijovic, Vuk
    Janev, Valentina
    Paunovic, Dejan
    Vranes, Sanja
    [J]. JOURNAL OF WEB SEMANTICS, 2016, 41 : 1 - 8
  • [47] SPATIO-TEMPORAL ANALYSIS OF EYE FIXATIONS DATA IN IMAGES
    Sharma, Puneet
    Cheikh, Faouzi A.
    Hardeberg, Jon Y.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1150 - 1154
  • [48] A Fuzzy Approach to Spatio-temporal Analysis for Pedestrian Surveillance
    Jain, Karan
    Raman, Rahul
    [J]. INTELLIGENT COMPUTING AND COMMUNICATION, ICICC 2019, 2020, 1034 : 727 - 736
  • [49] Calibrating trajectory data for spatio-temporal similarity analysis
    Su, Han
    Zheng, Kai
    Huang, Jiamin
    Wang, Haozhou
    Zhou, Xiaofang
    [J]. VLDB JOURNAL, 2015, 24 (01): : 93 - 116
  • [50] Inference for the Analysis of Ordinal Data with Spatio-Temporal Models
    Peraza-Garay, F.
    Marquez-Urbina, J. U.
    Gonzalez-Farias, G.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2020, 16 (02): : 192 - 225