A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data

被引:0
|
作者
Combrexelle, S. [1 ]
Wendt, H. [1 ]
Tourneret, J. -Y. [1 ]
Altmann, Y. [2 ]
McLaughlin, S. [2 ]
Abry, P. [3 ]
机构
[1] Univ Toulouse, CNRS, IRIT ENSEEIFIT, Toulouse, France
[2] Heriot Watt Univ, Sch Engn, Edinburgh, Midlothian, Scotland
[3] ENS Lyon, Dept Phys, CNRS, Lyon, France
关键词
Multifractal analysis; Bayesian estimation; Multivariate time series; Data augmentation; GMRF; DYNAMICS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multifractal (MF) analysis enables the theoretical study of scale invariance models and their practical assessment via wavelet leaders. Yet, the accurate estimation of MF parameters remains a challenging task. For a range of applications, notably biomedical, the performance can potentially be improved by taking advantage of the multivariate nature of data. However, this has barely been considered in the context of MF analysis. This paper proposes a Bayesian model that enables the joint estimation of MF parameters for multivariate time series. It builds on a recently introduced statistical model for leaders and is formulated using a 3D gamma Markov random field joint prior for the MF parameters of the voxels of spatio-temporal data, represented as a multivariate time series, that counteracts the statistical variability induced by small sample size. Numerical simulations indicate that the proposed Bayesian estimator significantly outperforms current state-of-the-art algorithms.
引用
下载
收藏
页码:331 / 334
页数:4
相关论文
共 50 条
  • [1] Heirarchical fully Bayesian spatio-temporal analysis of FMRI data
    Woolrich, M
    Brady, M
    Smith, SM
    NEUROIMAGE, 2001, 13 (06) : S287 - S287
  • [2] Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach
    Marcus L. Nascimento
    Kelly C. M. Gonçalves
    Mario Jorge Mendonça
    Computational Economics, 2023, 62 : 29 - 47
  • [3] A hierarchical Bayesian approach to the spatio-temporal modeling of air quality data
    Riccio, A
    Barone, G
    Chianese, E
    Giunta, G
    ATMOSPHERIC ENVIRONMENT, 2006, 40 (03) : 554 - 566
  • [4] Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach
    Nascimento, Marcus L.
    Goncalves, Kelly C. M.
    Mendonca, Mario Jorge
    COMPUTATIONAL ECONOMICS, 2023, 62 (01) : 29 - 47
  • [5] Bayesian modeling of spatio-temporal data with R
    Shanmugam, Ramalingam
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (07) : 1224 - 1224
  • [6] Spatio-temporal analysis of plant pests in a greenhouse using a Bayesian approach
    Poncet, Christine
    Lemesle, Valerie
    Mailleret, Ludovic
    Bout, Alexandre
    Boll, Roger
    Vaglio, Joelle
    AGRICULTURAL AND FOREST ENTOMOLOGY, 2010, 12 (03) : 325 - 332
  • [7] Bayesian penalized spline models for the analysis of spatio-temporal count data
    Bauer, Cici
    Wakefield, Jon
    Rue, Havard
    Self, Steve
    Feng, Zijian
    Wang, Yu
    STATISTICS IN MEDICINE, 2016, 35 (11) : 1848 - 1865
  • [8] A Bayesian Data Fusion Approach to Spatio-Temporal Fusion of Remotely Sensed Images
    Xue, Jie
    Leung, Yee
    Fung, Tung
    REMOTE SENSING, 2017, 9 (12)
  • [9] Bayesian design for sampling anomalous spatio-temporal data
    Katie Buchhorn
    Kerrie Mengersen
    Edgar Santos-Fernandez
    James McGree
    Statistics and Computing, 2025, 35 (3)
  • [10] Fully Bayesian spatio-temporal modeling of FMRI data
    Woolrich, MW
    Jenkinson, M
    Brady, JM
    Smith, SM
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) : 213 - 231