A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data

被引:0
|
作者
Combrexelle, S. [1 ]
Wendt, H. [1 ]
Tourneret, J. -Y. [1 ]
Altmann, Y. [2 ]
McLaughlin, S. [2 ]
Abry, P. [3 ]
机构
[1] Univ Toulouse, CNRS, IRIT ENSEEIFIT, Toulouse, France
[2] Heriot Watt Univ, Sch Engn, Edinburgh, Midlothian, Scotland
[3] ENS Lyon, Dept Phys, CNRS, Lyon, France
关键词
Multifractal analysis; Bayesian estimation; Multivariate time series; Data augmentation; GMRF; DYNAMICS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multifractal (MF) analysis enables the theoretical study of scale invariance models and their practical assessment via wavelet leaders. Yet, the accurate estimation of MF parameters remains a challenging task. For a range of applications, notably biomedical, the performance can potentially be improved by taking advantage of the multivariate nature of data. However, this has barely been considered in the context of MF analysis. This paper proposes a Bayesian model that enables the joint estimation of MF parameters for multivariate time series. It builds on a recently introduced statistical model for leaders and is formulated using a 3D gamma Markov random field joint prior for the MF parameters of the voxels of spatio-temporal data, represented as a multivariate time series, that counteracts the statistical variability induced by small sample size. Numerical simulations indicate that the proposed Bayesian estimator significantly outperforms current state-of-the-art algorithms.
引用
下载
收藏
页码:331 / 334
页数:4
相关论文
共 50 条
  • [31] VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data
    Chen, Wei
    Huang, Zhaosong
    Wu, Feiran
    Zhu, Minfeng
    Guan, Huihua
    Maciejewski, Ross
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (09) : 2636 - 2648
  • [32] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [33] Data analysis and processing for spatio-temporal forecasting
    Lee, Hyoungwoo
    Choo, Jaegul
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 737 - 739
  • [34] Multiscale recurrence analysis of spatio-temporal data
    Riedl, M.
    Marwan, N.
    Kurths, J.
    CHAOS, 2015, 25 (12)
  • [35] Spatio-Temporal Analysis for Smart City Data
    Bermudez-Edo, Maria
    Barnaghi, Payam
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1841 - 1845
  • [36] Interactive exploratory analysis of spatio-temporal data
    Dreesman, JM
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 407 - 412
  • [37] Fuzzy cluster analysis of spatio-temporal data
    Liu, ZJ
    George, R
    COMPUTER AND INFORMATION SCIENCES - ISCIS 2003, 2003, 2869 : 984 - 991
  • [38] AIRSTD: An Approach for Indexing and Retrieving Spatio-Temporal Data
    Halaoui, Hatem F.
    ADVANCED INTERNET BASED SYSTEMS AND APPLICATIONS, 2009, 4879 : 80 - 90
  • [39] An Enhanced Imputation Approach for Spatio-Temporal Clinical Data
    Yin, Yilin
    Chou, Chun-An
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 813 - 818
  • [40] Spatio-temporal patterns of childhood pneumonia in Bhutan: a Bayesian analysis
    Wangdi, Kinley
    Penjor, Kinley
    Tsheten, Tsheten
    Tshering, Chachu
    Gething, Peter
    Gray, Darren J.
    Clements, Archie C. A.
    SCIENTIFIC REPORTS, 2021, 11 (01)