A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data

被引:0
|
作者
Combrexelle, S. [1 ]
Wendt, H. [1 ]
Tourneret, J. -Y. [1 ]
Altmann, Y. [2 ]
McLaughlin, S. [2 ]
Abry, P. [3 ]
机构
[1] Univ Toulouse, CNRS, IRIT ENSEEIFIT, Toulouse, France
[2] Heriot Watt Univ, Sch Engn, Edinburgh, Midlothian, Scotland
[3] ENS Lyon, Dept Phys, CNRS, Lyon, France
来源
PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, (IWSSIP 2016) | 2016年
关键词
Multifractal analysis; Bayesian estimation; Multivariate time series; Data augmentation; GMRF; DYNAMICS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multifractal (MF) analysis enables the theoretical study of scale invariance models and their practical assessment via wavelet leaders. Yet, the accurate estimation of MF parameters remains a challenging task. For a range of applications, notably biomedical, the performance can potentially be improved by taking advantage of the multivariate nature of data. However, this has barely been considered in the context of MF analysis. This paper proposes a Bayesian model that enables the joint estimation of MF parameters for multivariate time series. It builds on a recently introduced statistical model for leaders and is formulated using a 3D gamma Markov random field joint prior for the MF parameters of the voxels of spatio-temporal data, represented as a multivariate time series, that counteracts the statistical variability induced by small sample size. Numerical simulations indicate that the proposed Bayesian estimator significantly outperforms current state-of-the-art algorithms.
引用
收藏
页码:331 / 334
页数:4
相关论文
共 50 条
  • [31] A Non Parametric Approach to the Outlier Detection in Spatio-Temporal Data Analysis
    Albanese, Alessia
    Petrosino, Alfredo
    INFORMATION TECHNOLOGY AND INNOVATION TRENDS IN ORGANIZATIONS, 2011, : 101 - 108
  • [32] A stack-based prospective spatio-temporal data analysis approach
    Chang, Wei
    Zeng, Daniel
    Chen, Hsinchun
    DECISION SUPPORT SYSTEMS, 2008, 45 (04) : 697 - 713
  • [33] VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data
    Chen, Wei
    Huang, Zhaosong
    Wu, Feiran
    Zhu, Minfeng
    Guan, Huihua
    Maciejewski, Ross
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (09) : 2636 - 2648
  • [34] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [35] Data analysis and processing for spatio-temporal forecasting
    Lee, Hyoungwoo
    Choo, Jaegul
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2020), 2020, : 737 - 739
  • [36] Multiscale recurrence analysis of spatio-temporal data
    Riedl, M.
    Marwan, N.
    Kurths, J.
    CHAOS, 2015, 25 (12)
  • [37] Spatio-Temporal Analysis for Smart City Data
    Bermudez-Edo, Maria
    Barnaghi, Payam
    COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), 2018, : 1841 - 1845
  • [38] Interactive exploratory analysis of spatio-temporal data
    Dreesman, JM
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 407 - 412
  • [39] Fuzzy cluster analysis of spatio-temporal data
    Liu, ZJ
    George, R
    COMPUTER AND INFORMATION SCIENCES - ISCIS 2003, 2003, 2869 : 984 - 991
  • [40] Bayesian spatio-temporal analysis of dengue transmission in Lao PDR
    Soukavong, Mick
    Thinkhamrop, Kavin
    Pratumchart, Khanittha
    Soulaphy, Chanthavy
    Xangsayarath, Phonepadith
    Mayxay, Mayfong
    Phommachanh, Sysavanh
    Kelly, Matthew
    Wangdi, Kinley
    Clements, Archie C. A.
    Suwannatrai, Apiporn T.
    SCIENTIFIC REPORTS, 2024, 14 (01):