A Bayesian Approach for the Multifractal Analysis of Spatio-Temporal Data

被引:0
|
作者
Combrexelle, S. [1 ]
Wendt, H. [1 ]
Tourneret, J. -Y. [1 ]
Altmann, Y. [2 ]
McLaughlin, S. [2 ]
Abry, P. [3 ]
机构
[1] Univ Toulouse, CNRS, IRIT ENSEEIFIT, Toulouse, France
[2] Heriot Watt Univ, Sch Engn, Edinburgh, Midlothian, Scotland
[3] ENS Lyon, Dept Phys, CNRS, Lyon, France
关键词
Multifractal analysis; Bayesian estimation; Multivariate time series; Data augmentation; GMRF; DYNAMICS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multifractal (MF) analysis enables the theoretical study of scale invariance models and their practical assessment via wavelet leaders. Yet, the accurate estimation of MF parameters remains a challenging task. For a range of applications, notably biomedical, the performance can potentially be improved by taking advantage of the multivariate nature of data. However, this has barely been considered in the context of MF analysis. This paper proposes a Bayesian model that enables the joint estimation of MF parameters for multivariate time series. It builds on a recently introduced statistical model for leaders and is formulated using a 3D gamma Markov random field joint prior for the MF parameters of the voxels of spatio-temporal data, represented as a multivariate time series, that counteracts the statistical variability induced by small sample size. Numerical simulations indicate that the proposed Bayesian estimator significantly outperforms current state-of-the-art algorithms.
引用
下载
收藏
页码:331 / 334
页数:4
相关论文
共 50 条
  • [41] A bayesian spatio-temporal dynamic analysis of food security in Africa
    Bofa, Adusei
    Zewotir, Temesgen
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [42] Bayesian spatio-temporal analysis of dengue transmission in Lao PDR
    Soukavong, Mick
    Thinkhamrop, Kavin
    Pratumchart, Khanittha
    Soulaphy, Chanthavy
    Xangsayarath, Phonepadith
    Mayxay, Mayfong
    Phommachanh, Sysavanh
    Kelly, Matthew
    Wangdi, Kinley
    Clements, Archie C. A.
    Suwannatrai, Apiporn T.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [43] Analysis of tornado counts with hierarchical Bayesian spatio-temporal models
    Anderson, CJ
    Wikle, CK
    21ST CONFERENCE ON SEVERE LOCAL STORMS, 2002, : 459 - 460
  • [44] An interchangeable approach for modelling spatio-temporal count data
    Chiogna, Monica
    Gaetan, Carlo
    ENVIRONMETRICS, 2010, 21 (7-8) : 844 - 862
  • [45] A statistical modeling approach for spatio-temporal degradation data
    Liu, Xiao
    Yeo, Kyongmin
    Kalagnanam, Jayant
    JOURNAL OF QUALITY TECHNOLOGY, 2018, 50 (02) : 166 - 182
  • [46] Modeling Trajectories: A Spatio-Temporal Data Type Approach
    Frihida, Ali
    Zheni, Donia
    Ben Ghezala, Henda
    Claramunt, Christophe
    PROCEEDINGS OF THE 20TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATION, 2009, : 447 - +
  • [47] Spatio-Temporal Filtering Approach for Tomographic SAR Data
    Hadj-Rabah, Karima
    Schirinzi, Gilda
    Daoud, Ishak
    Hocine, Faiza
    Belhadj-Aissa, Aichouche
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [48] A Bayesian spatio - temporal approach for the analysis of fMRI data with non - stationary noise
    Oikonomou, Vangelis P.
    Tripoliti, Evanthia E.
    Fotiadis, Dimitrios I.
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 4444 - +
  • [49] Spatio-temporal analysis of East Asian seismic zones based on multifractal theory
    Zhang, Ziyan
    Liu, Guoyong
    Chen, Changjiang
    Tian, Jiawei
    Liu, Shan
    Yin, Lirong
    Zheng, Wenfeng
    OPEN GEOSCIENCES, 2022, 14 (01) : 316 - 330
  • [50] A BAYESIAN SPATIO-TEMPORAL MODELING APPROACH TO THE INVERSE HEAT CONDUCTION PROBLEM
    Olabiyi, Ridwan
    Pandey, Hari
    Hu, Han
    Iquebal, Ashif
    PROCEEDINGS OF ASME 2023 HEAT TRANSFER SUMMER CONFERENCE, HT2023, 2023,