Measurement-device-independent verification of quantum states

被引:0
|
作者
Xu, Xin-Yu [1 ,2 ,3 ]
Zhen, Yi-Zheng [1 ,2 ,3 ]
Zhou, Qing [1 ,2 ,3 ]
Hu, Shu-Ming [1 ,2 ,3 ]
Wei, Jun-Hao [1 ,2 ,3 ]
Yang, Nuo-Ya [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ,4 ]
Liu, Nai-Le [1 ,2 ,3 ,4 ]
Chen, Kai [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY;
D O I
10.1103/PhysRevA.109.052607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Efficient and reliable verification of quantum states is central to quantum information processing applications. If using well-characterized measurement devices, effective methods have been developed for quantum state verification (QSV). In reality, however, measurement devices are generally imperfect or untrusted, which limits significantly the application of standard QSV protocols. Here, we propose the measurement-device-independent QSV (MDI-QSV) scheme for practice. With the help of trusted quantum inputs, we have developed a systematical approach to design MDI-QSV strategies for an arbitrary pure target state. We find that the number of required measurements has an optimal scaling with required accuracy and confidence level, similar to the standard QSV where trusted measurement devices are available. Our results offer a sample-efficient and realistic method for quantum state verification with virtues of a measurement-device-independent manner, and are within reach of current technology.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Measurement-Device-Independent Entanglement Witnesses for All Entangled Quantum States
    Branciard, Cyril
    Rosset, Denis
    Liang, Yeong-Cherng
    Gisin, Nicolas
    PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [12] Measurement-device-independent quantum digital signatures
    Puthoor, Ittoop Vergheese
    Amiri, Ryan
    Wallden, Petros
    Curty, Marcos
    Andersson, Erika
    PHYSICAL REVIEW A, 2016, 94 (02)
  • [13] Measurement-Device-Independent Quantum Secret Sharing
    Cai, Xiao-Qiu
    Li, Shuang
    Liu, Zi-Fan
    Wang, Tian-Yin
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (08)
  • [14] Measurement-Device-Independent Quantum Key Distribution
    S. P. Kulik
    S. N. Molotkov
    JETP Letters, 2023, 118 : 74 - 82
  • [15] Measurement-device-independent quantum coin tossing
    Zhao, Liangyuan
    Yin, Zhenqiang
    Wang, Shuang
    Chen, Wei
    Chen, Hua
    Guo, Guangcan
    Han, Zhengfu
    PHYSICAL REVIEW A, 2015, 92 (06):
  • [16] Measurement-device-independent quantum homomorphic encryption
    Cai, Xiao-Qiu
    Liu, Zi-Fan
    Wang, Tian-yin
    PHYSICS LETTERS A, 2024, 513
  • [17] Measurement-Device-Independent Quantum Key Distribution
    Lo, Hoi-Kwong
    Curty, Marcos
    Qi, Bing
    PHYSICAL REVIEW LETTERS, 2012, 108 (13)
  • [18] Measurement-Device-Independent Quantum Key Distribution
    Kulik, S. P.
    Molotkov, S. N.
    JETP LETTERS, 2023, 118 (01) : 74 - 82
  • [19] Measurement-device-independent quantum key distribution with quantum memories
    Abruzzo, Silvestre
    Kampermann, Hermann
    Bruss, Dagmar
    PHYSICAL REVIEW A, 2014, 89 (01)
  • [20] Influence of quantum states imperfections on the error rate in measurement-device-independent quantum key distribution
    Kupriyanov, P. A.
    Rudavin, N. V.
    Gerasin, I. S.
    Dvurechenskiy, A. A.
    Petrov, I. V.
    Menskoy, D. D.
    Shakhovoy, R. A.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2023, 16 (03): : 69 - 74