Measurement-device-independent verification of quantum states

被引:0
|
作者
Xu, Xin-Yu [1 ,2 ,3 ]
Zhen, Yi-Zheng [1 ,2 ,3 ]
Zhou, Qing [1 ,2 ,3 ]
Hu, Shu-Ming [1 ,2 ,3 ]
Wei, Jun-Hao [1 ,2 ,3 ]
Yang, Nuo-Ya [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ,4 ]
Liu, Nai-Le [1 ,2 ,3 ,4 ]
Chen, Kai [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY;
D O I
10.1103/PhysRevA.109.052607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Efficient and reliable verification of quantum states is central to quantum information processing applications. If using well-characterized measurement devices, effective methods have been developed for quantum state verification (QSV). In reality, however, measurement devices are generally imperfect or untrusted, which limits significantly the application of standard QSV protocols. Here, we propose the measurement-device-independent QSV (MDI-QSV) scheme for practice. With the help of trusted quantum inputs, we have developed a systematical approach to design MDI-QSV strategies for an arbitrary pure target state. We find that the number of required measurements has an optimal scaling with required accuracy and confidence level, similar to the standard QSV where trusted measurement devices are available. Our results offer a sample-efficient and realistic method for quantum state verification with virtues of a measurement-device-independent manner, and are within reach of current technology.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Experimental Measurement-Device-Independent Quantum Cryptographic Conferencing
    Du, Yifeng
    Liu, Yufeng
    Yang, Chengdong
    Zheng, Xiaodong
    Zhu, Shining
    Ma, Xiao-song
    PHYSICAL REVIEW LETTERS, 2025, 134 (04)
  • [32] Measurement-device-independent quantum secure direct communication
    ZengRong Zhou
    YuBo Sheng
    PengHao Niu
    LiuGuo Yin
    GuiLu Long
    Lajos Hanzo
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [33] Deterministic measurement-device-independent quantum secret sharing
    ZiKai Gao
    Tao Li
    ZhenHua Li
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [34] Measurement-device-independent quantum wireless network communication
    Yong-Li Yang
    Yu-Guang Yang
    Yi-Hua Zhou
    Wei-Min Shi
    Dan Li
    Quantum Information Processing, 21
  • [35] Measurement-device-independent quantum communication with an untrusted source
    Xu, Feihu
    PHYSICAL REVIEW A, 2015, 92 (01):
  • [36] Measurement-device-independent mutual quantum entity authentication
    Ji-Woong Choi
    Min-Sung Kang
    Chang Hoon Park
    Hyung-Jin Yang
    Sang-Wook Han
    Quantum Information Processing, 2021, 20
  • [37] Hacking measurement-device-independent quantum key distribution
    Lu, Feng-Yu
    Ye, Peng
    Wang, Ze-Hao
    Wang, Shuang
    Yin, Zhen-Qiang
    Wang, Rong
    Huang, Xiao-Jua
    Chen, Wei
    He, De-Yong
    Fan-Yuan, Guan-Je
    Guo, Guang-Can
    Han, Zheng-Fu
    OPTICA, 2023, 10 (04): : 520 - 527
  • [38] Measurement-device-independent quantum secure multiparty summation
    Shi, Run-Hua
    Liu, Bai
    Zhang, Mingwu
    QUANTUM INFORMATION PROCESSING, 2022, 21 (04)
  • [39] Measurement-device-independent quantum communication without encryption
    Niu, Peng-Hao
    Zhou, Zeng-Rong
    Lin, Zai-Sheng
    Sheng, Yu-Bo
    Yin, Liu-Guo
    Long, Gui-Lu
    SCIENCE BULLETIN, 2018, 63 (20) : 1345 - 1350
  • [40] Asynchronous measurement-device-independent quantum digital signatures
    Bian, Jing-Wei
    Li, Bing-Hong
    Xie, Yuan-Mei
    Yin, Hua-Lei
    Chen, Zeng-Bing
    PHYSICAL REVIEW A, 2024, 110 (01)