Measurement-device-independent verification of quantum states

被引:0
|
作者
Xu, Xin-Yu [1 ,2 ,3 ]
Zhen, Yi-Zheng [1 ,2 ,3 ]
Zhou, Qing [1 ,2 ,3 ]
Hu, Shu-Ming [1 ,2 ,3 ]
Wei, Jun-Hao [1 ,2 ,3 ]
Yang, Nuo-Ya [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ,4 ]
Liu, Nai-Le [1 ,2 ,3 ,4 ]
Chen, Kai [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY;
D O I
10.1103/PhysRevA.109.052607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Efficient and reliable verification of quantum states is central to quantum information processing applications. If using well-characterized measurement devices, effective methods have been developed for quantum state verification (QSV). In reality, however, measurement devices are generally imperfect or untrusted, which limits significantly the application of standard QSV protocols. Here, we propose the measurement-device-independent QSV (MDI-QSV) scheme for practice. With the help of trusted quantum inputs, we have developed a systematical approach to design MDI-QSV strategies for an arbitrary pure target state. We find that the number of required measurements has an optimal scaling with required accuracy and confidence level, similar to the standard QSV where trusted measurement devices are available. Our results offer a sample-efficient and realistic method for quantum state verification with virtues of a measurement-device-independent manner, and are within reach of current technology.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Deterministic measurement-device-independent quantum secret sharing
    ZiKai Gao
    Tao Li
    ZhenHua Li
    Science China(Physics,Mechanics & Astronomy), 2020, (12) : 76 - 83
  • [42] Experimental measurement-device-independent quantum digital signatures
    Roberts, G. L.
    Lucamarini, M.
    Yuan, Z. L.
    Dynes, J. F.
    Comandar, L. C.
    Sharpe, A. W.
    Shields, A. J.
    Curty, M.
    Puthoor, I. V.
    Andersson, E.
    NATURE COMMUNICATIONS, 2017, 8
  • [43] Measurement-device-independent quantum dialogue based on hyperentanglement
    Han, Kai-Qi
    Zhou, Lan
    Zhong, Wei
    Sheng, Yu-Bo
    QUANTUM INFORMATION PROCESSING, 2021, 20 (09)
  • [44] Measurement-device-independent quantum secure multiparty summation
    Run-Hua Shi
    Bai Liu
    Mingwu Zhang
    Quantum Information Processing, 21
  • [45] Measurement-device-independent quantum wireless network communication
    Yang, Yong-Li
    Yang, Yu-Guang
    Zhou, Yi-Hua
    Shi, Wei-Min
    Li, Dan
    QUANTUM INFORMATION PROCESSING, 2022, 21 (04)
  • [46] Measurement-device-independent quantum secure direct communication
    ZengRong Zhou
    Yu Bo Sheng
    PengHao Niu
    LiuGuo Yin
    GuiLu Long
    Lajos Hanzo
    Science China(Physics,Mechanics & Astronomy), 2020, Mechanics & Astronomy)2020 (03) : 6 - 11
  • [47] Measurement-device-independent quantum private query with qutrits
    Roy, Sarbani
    Maitra, Arpita
    Mukhopadhyay, Sourav
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (05)
  • [48] Reference-frame-independent measurement-device-independent quantum key distribution using fewer states
    Liu, Jing-Yang
    Zhou, Xing-Yu
    Wang, Qin
    PHYSICAL REVIEW A, 2021, 103 (02)
  • [49] Efficient decoy states for the reference-frame-independent measurement-device-independent quantum key distribution
    Lu, Feng-Yu
    Yin, Zhen-Qiang
    Fan-Yuan, Guan-Jie
    Wang, Rong
    Liu, Hang
    Wang, Shuang
    Chen, Wei
    He, De-Yong
    Huang, Wei
    Xu, Bing-Jie
    Guo, Guang-Can
    Han, Zheng-Fu
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [50] Reference-Frame-Independent Measurement-Device-Independent Quantum Key Distribution With Modified Coherent States
    Zhang, Chun-Mei
    Zhu, Jian-Rong
    Wang, Qin
    IEEE PHOTONICS JOURNAL, 2018, 10 (05):