Influence of quantum states imperfections on the error rate in measurement-device-independent quantum key distribution

被引:0
|
作者
Kupriyanov, P. A. [1 ,2 ,3 ,4 ]
Rudavin, N. V. [1 ,3 ,4 ,5 ]
Gerasin, I. S. [1 ,2 ,3 ,4 ]
Dvurechenskiy, A. A. [1 ,2 ,3 ,4 ]
Petrov, I. V. [1 ,3 ]
Menskoy, D. D. [1 ,3 ]
Shakhovoy, R. A. [1 ,3 ,4 ]
机构
[1] QRate, Moscow, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow, Russia
[3] Natl Univ Sci & Technol MISiS, NTI Ctr Quantum Commun, Moscow, Russia
[4] Russian Quantum Ctr, Skolkovo, Moscow, Russia
[5] HSE Univ, Moscow, Russia
关键词
measurement-device-independent quantum key distribution; imperfect states; time-bin phase-encoding;
D O I
10.18721/JPM.163.211
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD) is a modern technology that allows two legitimate users obtaining a shared cryptographic key completely secure. Unfortunately, real implementations of QKD systems contain vulnerabilities, such that an eavesdropper can still get information about the key. Therefore, QKD protocols generally use privacy amplification procedures that reduce the size of the key depending on the level of errors that are generally assumed to be caused by a non-legitimate user. So, the quantum bit error rate (QBER) becomes an important parameter significantly affecting the rate of key distribution. In this work, we investigate the influence of quantum states imperfections on the QBER in the measurement-device-independent QKD protocol with time-bin encoding. We proposed a theoretical model that describes imperfect states, and derived formulas for the dependence of the error level on the degree of imperfection. We also conducted an experiment, the results of which are in good agreement with the predictions of the theory.
引用
收藏
页码:69 / 74
页数:6
相关论文
共 50 条
  • [1] Analysis on quantum bit error rate in measurement-device-independent quantum key distribution using weak coherent states
    Du Ya-Nan
    Xie Wen-Zhong
    Jin Xuan
    Wang Jin-Dong
    Wei Zheng-Jun
    Qin Xiao-Juan
    Zhao Feng
    Zhang Zhi-Ming
    ACTA PHYSICA SINICA, 2015, 64 (11)
  • [2] Measurement-Device-Independent Quantum Key Distribution
    S. P. Kulik
    S. N. Molotkov
    JETP Letters, 2023, 118 : 74 - 82
  • [3] Measurement-Device-Independent Quantum Key Distribution
    Lo, Hoi-Kwong
    Curty, Marcos
    Qi, Bing
    PHYSICAL REVIEW LETTERS, 2012, 108 (13)
  • [4] Measurement-Device-Independent Quantum Key Distribution
    Kulik, S. P.
    Molotkov, S. N.
    JETP LETTERS, 2023, 118 (01) : 74 - 82
  • [5] Measurement-device-independent quantum key distribution with quantum memories
    Abruzzo, Silvestre
    Kampermann, Hermann
    Bruss, Dagmar
    PHYSICAL REVIEW A, 2014, 89 (01)
  • [6] Entanglement Measurement-Device-Independent Quantum Key Distribution
    Alshowkan, Muneer
    Elleithy, Khaled
    2017 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE (LISAT), 2017,
  • [7] Experimental Measurement-Device-Independent Quantum Key Distribution
    Liu, Yang
    Chen, Teng-Yun
    Wang, Liu-Jun
    Liang, Hao
    Shentu, Guo-Liang
    Wang, Jian
    Cui, Ke
    Yin, Hua-Lei
    Liu, Nai-Le
    Li, Li
    Ma, Xiongfeng
    Pelc, Jason S.
    Fejer, M. M.
    Peng, Cheng-Zhi
    Zhang, Qiang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2013, 111 (13)
  • [8] Key Expanding in Measurement-Device-Independent Quantum Key Distribution
    Georgi Bebrov
    International Journal of Theoretical Physics, 2021, 60 : 3566 - 3577
  • [9] Hacking measurement-device-independent quantum key distribution
    Lu, Feng-Yu
    Ye, Peng
    Wang, Ze-Hao
    Wang, Shuang
    Yin, Zhen-Qiang
    Wang, Rong
    Huang, Xiao-Jua
    Chen, Wei
    He, De-Yong
    Fan-Yuan, Guan-Je
    Guo, Guang-Can
    Han, Zheng-Fu
    OPTICA, 2023, 10 (04): : 520 - 527
  • [10] Key Expanding in Measurement-Device-Independent Quantum Key Distribution
    Bebrov, Georgi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (09) : 3566 - 3577