The Wasserstein Distance for Ricci Shrinkers

被引:0
|
作者
Conrado, Franciele [1 ]
Zhou, Detang [2 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[2] Univ Fed Fluminense, Dept Geometria, Inst Matemat & Estat, BR-24210201 Niteroi, RJ, Brazil
关键词
PERELMANS REDUCED VOLUME; GAP THEOREM; SOLITONS; CLASSIFICATION; RIGIDITY;
D O I
10.1093/imrn/rnae099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $(M<^>{n},g,f)$ be a Ricci shrinker such that $\text{Ric}_{f}=\frac{1}{2}g$ and the measure induced by the weighted volume element $(4\pi )<^>{-\frac{n}{2}}e<^>{-f}dv_{g}$ is a probability measure. Given a point $p\in M$ , we consider two probability measures defined in the tangent space $T_{p}M$ , namely the Gaussian measure $\gamma $ and the measure $\overline{\nu }$ induced by the exponential map of $M$ to $p$ . In this paper, we prove a result that provides an upper estimate for the Wasserstein distance with respect to the Euclidean metric $g_{0}$ between the measures $\overline{\nu }$ and $\gamma $ , and which also elucidates the rigidity implications resulting from this estimate.
引用
收藏
页码:10485 / 10502
页数:18
相关论文
共 50 条
  • [31] Wasserstein distance for OWA operators
    Harmati, Istvan a.
    Coroianu, Lucian
    Fuller, Robert
    FUZZY SETS AND SYSTEMS, 2024, 484
  • [32] Separability and completeness for the Wasserstein distance
    Bolley, F.
    SEMINAIRE DE PROBABILITES XLI, 2008, 1934 : 371 - 377
  • [33] The Ultrametric Gromov–Wasserstein Distance
    Facundo Mémoli
    Axel Munk
    Zhengchao Wan
    Christoph Weitkamp
    Discrete & Computational Geometry, 2023, 70 : 1378 - 1450
  • [34] Kahler-Ricci shrinkers and ancient solutions with nonnegative orthogonal bisectional curvature
    Li, Xiaolong
    Ni, Lei
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 138 : 28 - 45
  • [35] Wasserstein distance to independence models
    Celik, Turku Ozluem
    Jamneshan, Asgar
    Montufar, Guido
    Sturmfels, Bernd
    Venturello, Lorenzo
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 104 : 855 - 873
  • [36] Wasserstein distance on configuration space
    Decreusefond, L.
    POTENTIAL ANALYSIS, 2008, 28 (03) : 283 - 300
  • [37] Wasserstein Distance on Configuration Space
    L. Decreusefond
    Potential Analysis, 2008, 28 : 283 - 300
  • [38] Irregularity of Distribution in Wasserstein Distance
    Graham, Cole
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (05)
  • [39] The Wasserstein distance to the circular law
    Jalowy, Jonas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2285 - 2307
  • [40] On Properties of the Generalized Wasserstein Distance
    Benedetto Piccoli
    Francesco Rossi
    Archive for Rational Mechanics and Analysis, 2016, 222 : 1339 - 1365