Irregularity of Distribution in Wasserstein Distance

被引:8
|
作者
Graham, Cole [1 ]
机构
[1] Stanford Univ, Dept Math, 450 Jane Stanford Way,Bldg 380, Stanford, CA 94305 USA
关键词
Irregularity of distribution; Optimal transport; Wasserstein distance;
D O I
10.1007/s00041-020-09786-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the non-uniformity of probability measures on the interval and circle. On the interval, we identify the Wasserstein-p distance with the classical L-p-discrepancy. We thereby derive sharp estimates in Wasserstein distances for the irregularity of distribution of sequences on the interval and circle. Furthermore, we prove an L-p-adapted Erdos-Turan inequality, and use it to extend a well-known bound of Polya and Vinogradov on the equidistribution of quadratic residues in finite fields.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Irregularity of Distribution in Wasserstein Distance
    Cole Graham
    Journal of Fourier Analysis and Applications, 2020, 26
  • [2] Hybrid Wasserstein distance and fast distribution clustering
    Verdinelli, Isabella
    Wasserman, Larry
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 5088 - 5119
  • [3] Polynomial Birth–Death Distribution Approximation in the Wasserstein Distance
    Aihua Xia
    Fuxi Zhang
    Journal of Theoretical Probability, 2009, 22 : 294 - 310
  • [4] Polynomial Birth-Death Distribution Approximation in the Wasserstein Distance
    Xia, Aihua
    Zhang, Fuxi
    JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (02) : 294 - 310
  • [5] Shape of a distribution through the L2-Wasserstein distance
    Cuesta-Albertos, JA
    Bea, CM
    Rodríguez, JMR
    DISTRIBUTIONS WITH GIVEN MARGINALS AND STATISTICAL MODELLING, 2002, : 51 - 61
  • [6] Approximation for the Wasserstein distance
    Belili, N
    Heinich, H
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (06) : 537 - 540
  • [7] Global Pose Initialization Based on Gridded Gaussian Distribution With Wasserstein Distance
    Yang, Chenxi
    Zhou, Zhibo
    Zhuang, Hanyang
    Wang, Chunxiang
    Yang, Ming
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5094 - 5104
  • [8] Exact statistical inference for the Wasserstein distance by selective inferenceSelective Inference for the Wasserstein Distance
    Vo Nguyen Le Duy
    Ichiro Takeuchi
    Annals of the Institute of Statistical Mathematics, 2023, 75 : 127 - 157
  • [9] Exact statistical inference for the Wasserstein distance by selective inference Selective Inference for the Wasserstein Distance
    Le Duy, Vo Nguyen
    Takeuchi, Ichiro
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2023, 75 (01) : 127 - 157
  • [10] On Properties of the Generalized Wasserstein Distance
    Piccoli, Benedetto
    Rossi, Francesco
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (03) : 1339 - 1365