The Wasserstein Distance for Ricci Shrinkers

被引:0
|
作者
Conrado, Franciele [1 ]
Zhou, Detang [2 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[2] Univ Fed Fluminense, Dept Geometria, Inst Matemat & Estat, BR-24210201 Niteroi, RJ, Brazil
关键词
PERELMANS REDUCED VOLUME; GAP THEOREM; SOLITONS; CLASSIFICATION; RIGIDITY;
D O I
10.1093/imrn/rnae099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $(M<^>{n},g,f)$ be a Ricci shrinker such that $\text{Ric}_{f}=\frac{1}{2}g$ and the measure induced by the weighted volume element $(4\pi )<^>{-\frac{n}{2}}e<^>{-f}dv_{g}$ is a probability measure. Given a point $p\in M$ , we consider two probability measures defined in the tangent space $T_{p}M$ , namely the Gaussian measure $\gamma $ and the measure $\overline{\nu }$ induced by the exponential map of $M$ to $p$ . In this paper, we prove a result that provides an upper estimate for the Wasserstein distance with respect to the Euclidean metric $g_{0}$ between the measures $\overline{\nu }$ and $\gamma $ , and which also elucidates the rigidity implications resulting from this estimate.
引用
收藏
页码:10485 / 10502
页数:18
相关论文
共 50 条
  • [41] Bounding Wasserstein Distance with Couplings
    Biswas, Niloy
    Mackey, Lester
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 2947 - 2958
  • [42] On parameter estimation with the Wasserstein distance
    Bernton, Espen
    Jacob, Pierre E.
    Gerber, Mathieu
    Robert, Christian P.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) : 657 - 676
  • [43] Bubble-tree convergence and local diffeomorphism finiteness for gradient Ricci shrinkers
    Buzano, Reto
    Yudowitz, Louis
    MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (01)
  • [44] Bubble-tree convergence and local diffeomorphism finiteness for gradient Ricci shrinkers
    Reto Buzano
    Louis Yudowitz
    Mathematische Zeitschrift, 2023, 304
  • [45] SULCAL PATTERN MATCHING WITH THE WASSERSTEIN DISTANCE
    Chen, Zijian
    Das, Soumya
    Chung, Moo K.
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [46] Shape Analysis with Hyperbolic Wasserstein Distance
    Shi, Jie
    Zhang, Wen
    Wang, Yalin
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5051 - 5061
  • [47] Hyperbolic Wasserstein Distance for Shape Indexing
    Shi, Jie
    Wang, Yalin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1362 - 1376
  • [48] Differentially Private Sliced Wasserstein Distance
    Rakotomamonjy, Alain
    Ralaivola, Liva
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [49] Wasserstein distance, Fourier series and applications
    Steinerberger, Stefan
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (02): : 305 - 338
  • [50] ESTIMATING PROCESSES IN ADAPTED WASSERSTEIN DISTANCE
    Backhoff, Julio
    Bartl, Daniel
    Beiglbock, Mathias
    Wiesel, Johannes
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (01): : 529 - 550