The Wasserstein Distance for Ricci Shrinkers

被引:0
|
作者
Conrado, Franciele [1 ]
Zhou, Detang [2 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[2] Univ Fed Fluminense, Dept Geometria, Inst Matemat & Estat, BR-24210201 Niteroi, RJ, Brazil
关键词
PERELMANS REDUCED VOLUME; GAP THEOREM; SOLITONS; CLASSIFICATION; RIGIDITY;
D O I
10.1093/imrn/rnae099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $(M<^>{n},g,f)$ be a Ricci shrinker such that $\text{Ric}_{f}=\frac{1}{2}g$ and the measure induced by the weighted volume element $(4\pi )<^>{-\frac{n}{2}}e<^>{-f}dv_{g}$ is a probability measure. Given a point $p\in M$ , we consider two probability measures defined in the tangent space $T_{p}M$ , namely the Gaussian measure $\gamma $ and the measure $\overline{\nu }$ induced by the exponential map of $M$ to $p$ . In this paper, we prove a result that provides an upper estimate for the Wasserstein distance with respect to the Euclidean metric $g_{0}$ between the measures $\overline{\nu }$ and $\gamma $ , and which also elucidates the rigidity implications resulting from this estimate.
引用
收藏
页码:10485 / 10502
页数:18
相关论文
共 50 条
  • [21] Geometric Properties of Self-Shrinkers in Cylinder Shrinking Ricci Solitons
    Matheus Vieira
    Detang Zhou
    The Journal of Geometric Analysis, 2018, 28 : 170 - 189
  • [22] Geometric Properties of Self-Shrinkers in Cylinder Shrinking Ricci Solitons
    Vieira, Matheus
    Zhou, Detang
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) : 170 - 189
  • [23] Exact statistical inference for the Wasserstein distance by selective inferenceSelective Inference for the Wasserstein Distance
    Vo Nguyen Le Duy
    Ichiro Takeuchi
    Annals of the Institute of Statistical Mathematics, 2023, 75 : 127 - 157
  • [24] Liouville theorem on Ricci shrinkers with constant scalar curvature and its application
    Mai, Weixiong
    Ou, Jianyu
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (810): : 283 - 299
  • [25] Exact statistical inference for the Wasserstein distance by selective inference Selective Inference for the Wasserstein Distance
    Le Duy, Vo Nguyen
    Takeuchi, Ichiro
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2023, 75 (01) : 127 - 157
  • [26] WASSERSTEIN GEOMETRY AND RICCI CURVATURE BOUNDS FOR POISSON SPACES
    DELLO Schiavo, Lorenzo
    Herry, Ronan
    Suzuki, Kohei
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2024, 11
  • [27] On Properties of the Generalized Wasserstein Distance
    Piccoli, Benedetto
    Rossi, Francesco
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (03) : 1339 - 1365
  • [28] THE WASSERSTEIN DISTANCE AND APPROXIMATION THEOREMS
    RUSCHENDORF, L
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (01): : 117 - 129
  • [29] Wasserstein distance and metric trees
    Mathey-Prevot, Maxime
    Valette, Alain
    ENSEIGNEMENT MATHEMATIQUE, 2023, 69 (3-4): : 315 - 333
  • [30] Irregularity of Distribution in Wasserstein Distance
    Cole Graham
    Journal of Fourier Analysis and Applications, 2020, 26