aGrUM/pyAgrum : a Toolbox to Build Models and Algorithms for Probabilistic Graphical Models in Python']Python

被引:0
|
作者
Ducamp, Gaspard [1 ]
Gonzales, Christophe [2 ]
Wuillemin, Pierre-Henri [1 ]
机构
[1] Sorbonne Univ, LIP6, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS, Marseille, France
关键词
Bayesian Networks; Probabilistic Graphical Models; c plus; !text type='python']python[!/text;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the aGrUM framework, a LGPL C++ library providing state-of-the-art implementations of graphical models for decision making, including Bayesian Networks, Markov Networks (Markov random fields), Influence Diagrams, Credal Networks, Probabilistic Relational Models. The framework also contains a wrapper, pyAgrum for exploiting aGrUM in Python. This framework is the result of an ongoing effort to build an efficient and well maintained open source cross-platform software, running on Linux, MacOS X and Windows, for dealing with graphical models and for providing essential components to build new algorithms for graphical models.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Probabilistic Graphical Models and Their Inferences
    Wijayatunga, Priyantha
    2019 IEEE 4TH INTERNATIONAL WORKSHOPS ON FOUNDATIONS AND APPLICATIONS OF SELF* SYSTEMS (FAS*W 2019), 2019, : 251 - 252
  • [42] Survey of probabilistic graphical models
    Li Hongmei
    Hao Wenning
    Gan Wenyan
    Chen Gang
    2013 10TH WEB INFORMATION SYSTEM AND APPLICATION CONFERENCE (WISA 2013), 2013, : 275 - 280
  • [43] Probabilistic Graphical Models of Dyslexia
    Lakretz, Yair
    Chechik, Gal
    Friedmann, Naama
    Rosen-Zvi, Michal
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1919 - 1928
  • [44] OPENMI 2.0 STANDARD AS METHOD OF HYDROLOGICAL MODELS INTEGRATION BASED ON PYTHON']PYTHON LANGUAGE
    Szczepanek, Robert
    II KRAJOWY KONGRES HYDROLOGICZNY - HYDROLOGIA W INZYNIERII I GOSPODARCE WODNEJ, TOM I, 2014, 20 : 307 - 316
  • [45] Univariate machine learning models applied in photovoltaic power prediction using Python']Python
    Bahanni, Caouthar
    Mabrouki, Mustapha
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (01) : 589 - 607
  • [46] FragBuilder: an efficient Python']Python library to setup quantum chemistry calculations on peptides models
    Christensen, Anders S.
    Hamelrycle, Thomas
    Jensen, Jan H.
    PEERJ, 2014, 2 : 1 - 13
  • [47] CoBAMP: a Python']Python framework for metabolic pathway analysis in constraint-based models
    Vieira, Vitor
    Rocha, Miguel
    BIOINFORMATICS, 2019, 35 (24) : 5361 - 5362
  • [48] Automated Generation of Business Process Models using Constraint Logic Programming in Python']Python
    Paszun, Tymoteusz
    Wisniewski, Piotr
    Kluza, Krzysztof
    Ligeza, Antoni
    PROCEEDINGS OF THE 2019 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2019, : 733 - 742
  • [49] torchosr - A PyTorch extension package for Open Set Recognition models evaluation in Python']Python
    Komorniczak, Joanna
    Ksieniewicz, Pawel
    NEUROCOMPUTING, 2024, 566
  • [50] A Python']Python framework to create and simulate models with variable structure in common simulation environments
    Mehlhase, Alexandra
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2014, 20 (06) : 566 - 583