aGrUM/pyAgrum : a Toolbox to Build Models and Algorithms for Probabilistic Graphical Models in Python']Python

被引:0
|
作者
Ducamp, Gaspard [1 ]
Gonzales, Christophe [2 ]
Wuillemin, Pierre-Henri [1 ]
机构
[1] Sorbonne Univ, LIP6, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS, Marseille, France
关键词
Bayesian Networks; Probabilistic Graphical Models; c plus; !text type='python']python[!/text;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the aGrUM framework, a LGPL C++ library providing state-of-the-art implementations of graphical models for decision making, including Bayesian Networks, Markov Networks (Markov random fields), Influence Diagrams, Credal Networks, Probabilistic Relational Models. The framework also contains a wrapper, pyAgrum for exploiting aGrUM in Python. This framework is the result of an ongoing effort to build an efficient and well maintained open source cross-platform software, running on Linux, MacOS X and Windows, for dealing with graphical models and for providing essential components to build new algorithms for graphical models.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] PGM_PyLib: A Toolkit for Probabilistic Graphical Models in Python']Python
    Serrano-Perez, Jonathan
    Enrique Sucar, L.
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 625 - 628
  • [2] Testing of Python']Python Models of Parallelized Genetic Algorithms
    Skorpil, Vladislav
    Oujersky, Vaclav
    Tuleja, Martin
    2020 43RD INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2020, : 235 - 238
  • [3] Linear Models with Python']Python
    Lipovetsky, Stan
    TECHNOMETRICS, 2021, 63 (03) : 426 - 427
  • [4] DeepNotebooks: Deep Probabilistic Models Construct Python']Python Notebooks for Reporting Datasets
    Voelcker, Claas
    Molina, Alejandro
    Neumann, Johannes
    Westermann, Dirk
    Kersting, Kristian
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I, 2020, 1167 : 28 - 43
  • [5] GridFix: A Python']Python toolbox to facilitate fixation analysis and evaluation of saliency algorithms using Generalized linear mixed models (GLMM)
    Schuetz, Immo
    Einhaeuser, Wolfgang
    Nuthmann, Antje
    PERCEPTION, 2016, 45 : 306 - 307
  • [6] WordGraph: A Python']Python Package for Reconstructing Interactive Causal Graphical Models from Text Data
    Ferdjaoui, Amine
    Affeldt, Severine
    Nadif, Mohamed
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 1046 - 1049
  • [8] The Study of Mathematical Models and Algorithms for Face Recognition in Images Using Python']Python in Proctoring System
    Nurpeisova, Ardak
    Shaushenova, Anargul
    Mutalova, Zhazira
    Zulpykhar, Zhandos
    Ongarbayeva, Maral
    Niyazbekova, Shakizada
    Semenov, Alexander
    Maisigova, Leila
    COMPUTATION, 2022, 10 (08)
  • [9] Programming biological models in Python']Python using PySB
    Lopez, Carlos F.
    Muhlich, Jeremy L.
    Bachman, John A.
    Sorger, Peter K.
    MOLECULAR SYSTEMS BIOLOGY, 2013, 9
  • [10] hyperbox-brain: A Python']Python toolbox for hyperbox-based machine learning algorithms
    Khuat, Thanh Tung
    Gabrys, Bogdan
    SOFTWAREX, 2023, 23