aGrUM/pyAgrum : a Toolbox to Build Models and Algorithms for Probabilistic Graphical Models in Python']Python

被引:0
|
作者
Ducamp, Gaspard [1 ]
Gonzales, Christophe [2 ]
Wuillemin, Pierre-Henri [1 ]
机构
[1] Sorbonne Univ, LIP6, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS, Marseille, France
关键词
Bayesian Networks; Probabilistic Graphical Models; c plus; !text type='python']python[!/text;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the aGrUM framework, a LGPL C++ library providing state-of-the-art implementations of graphical models for decision making, including Bayesian Networks, Markov Networks (Markov random fields), Influence Diagrams, Credal Networks, Probabilistic Relational Models. The framework also contains a wrapper, pyAgrum for exploiting aGrUM in Python. This framework is the result of an ongoing effort to build an efficient and well maintained open source cross-platform software, running on Linux, MacOS X and Windows, for dealing with graphical models and for providing essential components to build new algorithms for graphical models.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] APLUS: A Python']Python library for usefulness simulations of machine learning models in healthcare
    Wornow, Michael
    Ross, Elsie Gyang
    Callahan, Alison
    Shah, Nigam H.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 139
  • [32] Refined colony management of complex transgenic mouse models using python']python
    Burvill, Jon
    Sinclair, Caroline
    Metcalf, Tom
    Newman, Stuart
    TRANSGENIC RESEARCH, 2022, 31 (SUPPL 1) : 5 - 6
  • [33] EASYMORE: A Python']Python package to streamline the remapping of variables for Earth System models
    Gharari, Shervan
    Keshavarz, Kasra
    Knoben, Wouter J. M.
    Tang, Gouqiang
    Clark, Martyn P.
    SOFTWAREX, 2023, 24
  • [34] Python']Python code smells detection using conventional machine learning models
    Sandouka, Rana
    Aljamaan, Hamoud
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [35] Python']Python codes to generate skeletal muscle models on each hierarchical level
    Lamsfuss, Jens
    Bargmann, Swantje
    SOFTWARE IMPACTS, 2022, 14
  • [36] mmLib Python']Python toolkit for manipulating annotated structural models of biological macromolecules
    Painter, J
    Merritt, EA
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2004, 37 : 174 - 178
  • [37] Deep learning models in Python']Python for predicting hydrogen production: A comparative study
    Devasahayam, Sheila
    ENERGY, 2023, 280
  • [38] Symbolic kinetic models in python']python (SKiMpy): intuitive modeling of large-scale biological kinetic models
    Weilandt, Daniel R.
    Salvy, Pierre
    Masid, Maria
    Fengos, Georgios
    Denhardt-Erikson, Robin
    Hosseini, Zhaleh
    Hatzimanikatis, Vassily
    BIOINFORMATICS, 2023, 39 (01)
  • [39] SOFTWARE IMPLEMENTATION OF PSPISE-BASED MODELS IN THE PYTHON']PYTHON PROGRAMMING LANGUAGE
    Popov, Stoyan
    Hinov, Nikolay
    INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2023, 15 (03): : 65 - 74
  • [40] PostBP: A Python']Python library to analyze outputs from wildfire growth models
    Liu, Ning
    Yemshanov, Denys
    Parisien, Marc-Andre
    Stockdale, Chris
    Moore, Brett
    Koch, Frank H.
    METHODSX, 2024, 13