aGrUM/pyAgrum : a Toolbox to Build Models and Algorithms for Probabilistic Graphical Models in Python']Python

被引:0
|
作者
Ducamp, Gaspard [1 ]
Gonzales, Christophe [2 ]
Wuillemin, Pierre-Henri [1 ]
机构
[1] Sorbonne Univ, LIP6, 4 Pl Jussieu, F-75005 Paris, France
[2] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS, Marseille, France
关键词
Bayesian Networks; Probabilistic Graphical Models; c plus; !text type='python']python[!/text;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the aGrUM framework, a LGPL C++ library providing state-of-the-art implementations of graphical models for decision making, including Bayesian Networks, Markov Networks (Markov random fields), Influence Diagrams, Credal Networks, Probabilistic Relational Models. The framework also contains a wrapper, pyAgrum for exploiting aGrUM in Python. This framework is the result of an ongoing effort to build an efficient and well maintained open source cross-platform software, running on Linux, MacOS X and Windows, for dealing with graphical models and for providing essential components to build new algorithms for graphical models.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Suggesting Comment Completions for Python']Python using Neural Language Models
    Ciurumelea, Adelina
    Proksch, Sebastian
    Gall, Harald C.
    PROCEEDINGS OF THE 2020 IEEE 27TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER '20), 2020, : 456 - 467
  • [22] Probabilistic graphical models
    Gámez, JA
    Salmerón, A
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2003, 18 (02) : 149 - 151
  • [23] CMCpy: Genetic Code-Message Coevolution Models in Python']Python
    Becich, Peter J.
    Stark, Brian P.
    Bhat, Harish S.
    Ardell, David H.
    EVOLUTIONARY BIOINFORMATICS, 2013, 9 : 111 - 125
  • [24] AUTOMATIC GENERATION OF DIGITAL ELEVATION MODELS USING PYTHON']PYTHON SCRIPTS
    Dobesova, Zdena
    11TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE (SGEM 2011), VOL II, 2011, : 599 - 604
  • [25] Bambi: A Simple Interface for Fitting Bayesian Linear Models in Python']Python
    Capretto, Tomas
    Piho, Camen
    Kumar, Ravin
    Westfall, Jacob
    Yarkoni, Tal
    Martin, Osvaldo A.
    JOURNAL OF STATISTICAL SOFTWARE, 2022, 103 (15): : 1 - 29
  • [26] medigan: a Python']Python library of pretrained generative models for medical image synthesis
    Osuala, Richard
    Skorupko, Grzegorz
    Lazrak, Noussair
    Garrucho, Lidia
    Garcia, Eloy
    Joshi, Smriti
    Jouide, Socayna
    Rutherford, Michael
    Prior, Fred
    Kushibar, Kaisar
    Diaz, Oliver
    Lekadir, Karim
    JOURNAL OF MEDICAL IMAGING, 2023, 10 (06)
  • [27] yggdrasil: a Python']Python package for integrating computational models across languages and scales
    Lang, Meagan
    IN SILICO PLANTS, 2019, 1 (01):
  • [28] Investigating large language models capabilities for automatic code repair in Python']Python
    Omari, Safwan
    Basnet, Kshitiz
    Wardat, Mohammad
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (08): : 10717 - 10731
  • [29] PyDREAM: high-dimensional parameter inference for biological models in python']python
    Shockley, Erin M.
    Vrugt, Jasper A.
    Lopez, Carlos F.
    BIOINFORMATICS, 2018, 34 (04) : 695 - 697
  • [30] Troppo - A Python']Python Framework for the Reconstruction of Context-Specific Metabolic Models
    Ferreira, Jorge
    Vieira, Vitor
    Gomes, Jorge
    Correia, Sara
    Rocha, Miguel
    PRACTICAL APPLICATIONS OF COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 1005 : 146 - 153