Profiling Dynamic Patterns of Single-Cell Motility

被引:1
|
作者
Maity, Debonil [1 ,2 ]
Sivakumar, Nikita [1 ,2 ]
Kamat, Pratik [2 ,3 ]
Zamponi, Nahuel [4 ]
Min, Chanhong [1 ,2 ]
Du, Wenxuan [2 ,3 ]
Jayatilaka, Hasini [2 ]
Johnston, Adrian [2 ,3 ]
Starich, Bartholomew [2 ,3 ]
Agrawal, Anshika [3 ]
Riley, Deanna [2 ]
Venturutti, Leandro [5 ]
Melnick, Ari [4 ]
Cerchietti, Leandro [4 ]
Walston, Jeremy [2 ,6 ]
Phillip, Jude M. [1 ,2 ,3 ,7 ]
机构
[1] Johns Hopkins Univ, Biomed Engn Dept, Baltimore, MD 21212 USA
[2] Johns Hopkins Univ, Inst Nanobiotechnol, Baltimore, MD 21212 USA
[3] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21212 USA
[4] Weill Cornell Med, Dept Med, Div Hematol & Med Oncol, New York, NY 10065 USA
[5] Univ British Columbia, British Columbia Canc Res Inst, Ctr Lymphoid Canc, Dept Pathol, Vancouver, BC V6T 1Z4, Canada
[6] Johns Hopkins Sch Med, Dept Med Geriatr & Gerontol, Baltimore, MD 21224 USA
[7] Johns Hopkins Sch Med, Sidney Kimmel Comprehens Canc Ctr, Dept Oncol, Baltimore, MD 21287 USA
基金
美国国家卫生研究院;
关键词
cell motility; high-throughput cell phenotyping; single-cell behaviors; TUMOR HETEROGENEITY; MIGRATION; CANCER; OMICS;
D O I
10.1002/advs.202400918
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cell motility plays an essential role in many biological processes as cells move and interact within their local microenvironments. Current methods for quantifying cell motility typically involve tracking individual cells over time, but the results are often presented as averaged values across cell populations. While informative, these ensemble approaches have limitations in assessing cellular heterogeneity and identifying generalizable patterns of single-cell behaviors, at baseline and in response to perturbations. In this study, CaMI is introduced, a computational framework designed to leverage the single-cell nature of motility data. CaMI identifies and classifies distinct spatio-temporal behaviors of individual cells, enabling robust classification of single-cell motility patterns in a large dataset (n = 74 253 cells). This framework allows quantification of spatial and temporal heterogeneities, determination of single-cell motility behaviors across various biological conditions and provides a visualization scheme for direct interpretation of dynamic cell behaviors. Importantly, CaMI reveals insights that conventional cell motility analyses may overlook, showcasing its utility in uncovering robust biological insights. Together, a multivariate framework is presented to classify emergent patterns of single-cell motility, emphasizing the critical role of cellular heterogeneity in shaping cell behaviors across populations. Authors present CaMI, a novel computational framework designed to leverage single-cell motility to deduce novel biological insights. CaMI identifies distinct spatio-temporal behaviors of cells to enable robust classification of cell motility patterns. Furthermore, CaMI provides a means to directly compute cellular heterogeneity, quantify single-cell behaviors across multiple conditions, and a visualization scheme for direct interpretation of emergent cell behaviors. image
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Quantifying the impact of electric fields on single-cell motility
    Prescott, Thomas P.
    Zhu, Kan
    Zhao, Min
    Baker, Ruth E.
    BIOPHYSICAL JOURNAL, 2021, 120 (16) : 3363 - 3373
  • [32] Single-cell Motility Analysis of Tethered Human Spermatozoa
    Skinner, William M.
    Mannowetz, Nadja
    Lishko, Polina V.
    Roan, Nadia R.
    BIO-PROTOCOL, 2019, 9 (05):
  • [33] Single-Cell Transcriptomic Profiling Unveils Dynamic Immune Cell Responses during Haemonchus contortus Infection
    Wang, Wenxuan
    Jin, Zhe
    Kong, Mei
    Yan, Zhuofan
    Fu, Liangliang
    Du, Xiaoyong
    CELLS, 2024, 13 (10)
  • [34] Single-cell profiling lights different cell trajectories in plants
    Hong-xiang Zheng
    Feng-hui Wu
    Si-min Li
    Xian Sheng Zhang
    Na Sui
    aBIOTECH, 2021, 2 : 64 - 78
  • [35] Direct cell lysis for single-cell gene expression profiling
    Svec, David
    Andersson, Daniel
    Pekny, Milos
    Sjoback, Robert
    Kubista, Mikael
    Stahlberg, Anders
    FRONTIERS IN ONCOLOGY, 2013, 3
  • [36] Single-cell profiling lights different cell trajectories in plants
    Zheng, Hong-xiang
    Wu, Feng-hui
    Li, Si-min
    Zhang, Xian Sheng
    Sui, Na
    ABIOTECH, 2021, 2 (01) : 64 - 78
  • [37] Unmassked: Single-Cell Profiling of Immune Cell Populations in Tumors
    Varadarajan, Navin
    MOLECULAR THERAPY, 2017, 25 (08) : 1745 - 1747
  • [38] A role for Rho GTPases and cell–cell adhesion in single-cell motility in vivo
    Elena Kardash
    Michal Reichman-Fried
    Jean-Léon Maître
    Bijan Boldajipour
    Ekaterina Papusheva
    Esther-Maria Messerschmidt
    Carl-Philipp Heisenberg
    Erez Raz
    Nature Cell Biology, 2010, 12 : 47 - 53
  • [39] Single-Cell Profiling of Kidney Transplant Recipients With Immunosuppressive Treatment Reveals the Dynamic Immune Characteristics
    Liu, Yongguang
    Liu, Xiaoyou
    Zhou, Song
    Xu, Ruiquan
    Hu, Jianmin
    Liao, Guorong
    Liao, Jun
    Guo, Zefeng
    Li, Yuzhu
    Yang, Siqiang
    Li, Shichao
    Chen, Hua
    Guo, Ying
    Li, Min
    Fan, Lipei
    Li, Liuyang
    Zhao, Ming
    Liu, Ding
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [40] Single-cell transcriptomic profiling of lung endothelial cells identifies dynamic inflammatory and regenerative subpopulations
    Zhang, Lianghui
    Gao, Shang
    White, Zachary
    Dai, Yang
    Malik, Asrar B.
    Rehman, Jalees
    JCI INSIGHT, 2022, 7 (11)