Profiling Dynamic Patterns of Single-Cell Motility

被引:1
|
作者
Maity, Debonil [1 ,2 ]
Sivakumar, Nikita [1 ,2 ]
Kamat, Pratik [2 ,3 ]
Zamponi, Nahuel [4 ]
Min, Chanhong [1 ,2 ]
Du, Wenxuan [2 ,3 ]
Jayatilaka, Hasini [2 ]
Johnston, Adrian [2 ,3 ]
Starich, Bartholomew [2 ,3 ]
Agrawal, Anshika [3 ]
Riley, Deanna [2 ]
Venturutti, Leandro [5 ]
Melnick, Ari [4 ]
Cerchietti, Leandro [4 ]
Walston, Jeremy [2 ,6 ]
Phillip, Jude M. [1 ,2 ,3 ,7 ]
机构
[1] Johns Hopkins Univ, Biomed Engn Dept, Baltimore, MD 21212 USA
[2] Johns Hopkins Univ, Inst Nanobiotechnol, Baltimore, MD 21212 USA
[3] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21212 USA
[4] Weill Cornell Med, Dept Med, Div Hematol & Med Oncol, New York, NY 10065 USA
[5] Univ British Columbia, British Columbia Canc Res Inst, Ctr Lymphoid Canc, Dept Pathol, Vancouver, BC V6T 1Z4, Canada
[6] Johns Hopkins Sch Med, Dept Med Geriatr & Gerontol, Baltimore, MD 21224 USA
[7] Johns Hopkins Sch Med, Sidney Kimmel Comprehens Canc Ctr, Dept Oncol, Baltimore, MD 21287 USA
基金
美国国家卫生研究院;
关键词
cell motility; high-throughput cell phenotyping; single-cell behaviors; TUMOR HETEROGENEITY; MIGRATION; CANCER; OMICS;
D O I
10.1002/advs.202400918
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cell motility plays an essential role in many biological processes as cells move and interact within their local microenvironments. Current methods for quantifying cell motility typically involve tracking individual cells over time, but the results are often presented as averaged values across cell populations. While informative, these ensemble approaches have limitations in assessing cellular heterogeneity and identifying generalizable patterns of single-cell behaviors, at baseline and in response to perturbations. In this study, CaMI is introduced, a computational framework designed to leverage the single-cell nature of motility data. CaMI identifies and classifies distinct spatio-temporal behaviors of individual cells, enabling robust classification of single-cell motility patterns in a large dataset (n = 74 253 cells). This framework allows quantification of spatial and temporal heterogeneities, determination of single-cell motility behaviors across various biological conditions and provides a visualization scheme for direct interpretation of dynamic cell behaviors. Importantly, CaMI reveals insights that conventional cell motility analyses may overlook, showcasing its utility in uncovering robust biological insights. Together, a multivariate framework is presented to classify emergent patterns of single-cell motility, emphasizing the critical role of cellular heterogeneity in shaping cell behaviors across populations. Authors present CaMI, a novel computational framework designed to leverage single-cell motility to deduce novel biological insights. CaMI identifies distinct spatio-temporal behaviors of cells to enable robust classification of cell motility patterns. Furthermore, CaMI provides a means to directly compute cellular heterogeneity, quantify single-cell behaviors across multiple conditions, and a visualization scheme for direct interpretation of emergent cell behaviors. image
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Single-cell transcriptomic profiling of human keratinocyte carcinomas
    Choi, H.
    Jeong, S.
    Kang, M.
    Choi, M.
    Young, J. N.
    Poplausky, D.
    Gulati, N.
    Park, C.
    Kim, H.
    Park, J.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2023, 143 (05) : S48 - S48
  • [42] Advanced technologies for single-cell in situ protein profiling
    Wen Zhou
    Xiaoyue Ni
    Chen Xie
    Quli Fan
    Dingbin Liu
    Science China(Chemistry), 2022, 65 (01) : 48 - 67
  • [43] Immune Profiling of MM Microenvironment at Single-Cell Resolution
    Gong, Lixin
    Sun, Hao
    Lv, Junqiang
    Qiu, Lugui
    Hao, Mu
    BLOOD, 2022, 140 : 9976 - 9977
  • [44] Single-cell profiling of lncRNAs in the developing human brain
    Ma, Qing
    Chang, Howard Y.
    GENOME BIOLOGY, 2016, 17
  • [45] Single-Cell Transcriptome Profiling of Protozoan and Metazoan Parasites
    Notzel, Christopher
    Poran, Asaf
    Kafsack, Bjorn F. C.
    TRENDS IN PARASITOLOGY, 2018, 34 (09) : 731 - 734
  • [46] Single-cell transcriptional profiling in brain reward structures
    Day, Jeremy J.
    Martinowich, Keri
    NEUROPSYCHOPHARMACOLOGY, 2023, 48 (01) : 243 - 244
  • [47] Single-cell immune profiling of Meniere Disease patients
    Flook, Marisa
    Escalera-Balsera, Alba
    Rybakowska, Paulina
    Frejo, Lidia
    Batuecas-Caletrio, Angel
    Amor-Dorado, Juan C.
    Soto-Varela, Andres
    Alarcon-Riquelme, Marta
    Lopez-Escamez, Jose A.
    CLINICAL IMMUNOLOGY, 2023, 252
  • [48] Precision DNA Mixture Interpretation with Single-Cell Profiling
    Ge, Jianye
    King, Jonathan L.
    Smuts, Amy
    Budowle, Bruce
    GENES, 2021, 12 (11)
  • [49] Comprehensive single-cell transcriptional profiling of a multicellular organism
    Cao, Junyue
    Packer, Jonathan S.
    Ramani, Vijay
    Cusanovich, Darren A.
    Huynh, Chau
    Daza, Riza
    Qiu, Xiaojie
    Lee, Choli
    Furlan, Scott N.
    Steemers, Frank J.
    Adey, Andrew
    Waterston, Robert H.
    Trapnell, Cole
    Shendure, Jay
    SCIENCE, 2017, 357 (6352) : 661 - 667
  • [50] Single-cell transcriptional profiling in brain reward structures
    Jeremy J. Day
    Keri Martinowich
    Neuropsychopharmacology, 2023, 48 : 243 - 244