Profiling Dynamic Patterns of Single-Cell Motility

被引:1
|
作者
Maity, Debonil [1 ,2 ]
Sivakumar, Nikita [1 ,2 ]
Kamat, Pratik [2 ,3 ]
Zamponi, Nahuel [4 ]
Min, Chanhong [1 ,2 ]
Du, Wenxuan [2 ,3 ]
Jayatilaka, Hasini [2 ]
Johnston, Adrian [2 ,3 ]
Starich, Bartholomew [2 ,3 ]
Agrawal, Anshika [3 ]
Riley, Deanna [2 ]
Venturutti, Leandro [5 ]
Melnick, Ari [4 ]
Cerchietti, Leandro [4 ]
Walston, Jeremy [2 ,6 ]
Phillip, Jude M. [1 ,2 ,3 ,7 ]
机构
[1] Johns Hopkins Univ, Biomed Engn Dept, Baltimore, MD 21212 USA
[2] Johns Hopkins Univ, Inst Nanobiotechnol, Baltimore, MD 21212 USA
[3] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21212 USA
[4] Weill Cornell Med, Dept Med, Div Hematol & Med Oncol, New York, NY 10065 USA
[5] Univ British Columbia, British Columbia Canc Res Inst, Ctr Lymphoid Canc, Dept Pathol, Vancouver, BC V6T 1Z4, Canada
[6] Johns Hopkins Sch Med, Dept Med Geriatr & Gerontol, Baltimore, MD 21224 USA
[7] Johns Hopkins Sch Med, Sidney Kimmel Comprehens Canc Ctr, Dept Oncol, Baltimore, MD 21287 USA
基金
美国国家卫生研究院;
关键词
cell motility; high-throughput cell phenotyping; single-cell behaviors; TUMOR HETEROGENEITY; MIGRATION; CANCER; OMICS;
D O I
10.1002/advs.202400918
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cell motility plays an essential role in many biological processes as cells move and interact within their local microenvironments. Current methods for quantifying cell motility typically involve tracking individual cells over time, but the results are often presented as averaged values across cell populations. While informative, these ensemble approaches have limitations in assessing cellular heterogeneity and identifying generalizable patterns of single-cell behaviors, at baseline and in response to perturbations. In this study, CaMI is introduced, a computational framework designed to leverage the single-cell nature of motility data. CaMI identifies and classifies distinct spatio-temporal behaviors of individual cells, enabling robust classification of single-cell motility patterns in a large dataset (n = 74 253 cells). This framework allows quantification of spatial and temporal heterogeneities, determination of single-cell motility behaviors across various biological conditions and provides a visualization scheme for direct interpretation of dynamic cell behaviors. Importantly, CaMI reveals insights that conventional cell motility analyses may overlook, showcasing its utility in uncovering robust biological insights. Together, a multivariate framework is presented to classify emergent patterns of single-cell motility, emphasizing the critical role of cellular heterogeneity in shaping cell behaviors across populations. Authors present CaMI, a novel computational framework designed to leverage single-cell motility to deduce novel biological insights. CaMI identifies distinct spatio-temporal behaviors of cells to enable robust classification of cell motility patterns. Furthermore, CaMI provides a means to directly compute cellular heterogeneity, quantify single-cell behaviors across multiple conditions, and a visualization scheme for direct interpretation of emergent cell behaviors. image
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Profiling Chromatin Accessibility at Single-cell Resolution
    Sarthak Sinha
    Ansuman TSatpathy
    Weiqiang Zhou
    Hongkai Ji
    Jo AStratton
    Arzina Jaffer
    Nizar Bahlis
    Sorana Morrissy
    Jeff ABiernaskie
    Genomics,Proteomics & Bioinformatics, 2021, (02) : 172 - 190
  • [22] Single-cell profiling sheds new light
    Asher Mullard
    Nature Reviews Drug Discovery, 2011, 10 : 477 - 478
  • [23] Virus Infection Variability by Single-Cell Profiling
    Suomalainen, Maarit
    Greber, Urs F.
    VIRUSES-BASEL, 2021, 13 (08):
  • [24] Advances in the Profiling of Single-Cell DNA Modifications
    Bai, Dongsheng
    Yi, Chengqi
    SMALL METHODS, 2019, 3 (10)
  • [25] Into the multiverse: advances in single-cell multiomic profiling
    Ogbeide, Silvia
    Giannese, Francesca
    Mincarelli, Laura
    Macaulay, Iain C.
    TRENDS IN GENETICS, 2022, 38 (08) : 831 - 843
  • [26] First single-cell profiling of gut eosinophils
    Charlotte Harrison
    Lab Animal, 2023, 52 : 33 - 33
  • [27] Multiplexed Single-Cell in situ RNA Profiling
    Wang, Yu-Sheng
    Guo, Jia
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [28] Profiling single-cell chromatin accessibility in plants
    Marand, Alexandre P.
    Zhang, Xuan
    Nelson, Julie
    dos Reis, Pedro Augusto Braga
    Schmitz, Robert J.
    STAR PROTOCOLS, 2021, 2 (03):
  • [29] Single-Cell Protein Secretion Detection and Profiling
    Chen, Zhuo
    Chen, Jonathan J.
    Fan, Rong
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 12, 2019, 12 : 431 - 449
  • [30] First single-cell profiling of gut eosinophils
    Le Bras, Alexandra
    Harrison, Charlotte
    LAB ANIMAL, 2023, 52 (02) : 33 - 33