Aquila-LCS: GPU/CPU-accelerated particle advection schemes for large-scale simulations

被引:0
|
作者
Lagares, Christian [1 ,2 ]
Araya, Guillermo [2 ]
机构
[1] Univ Puerto Rico, Dept Mech Eng, POB 9000, Mayaguez, PR 00681 USA
[2] Univ Texas San Antonio, Dept Mech Eng, Computat Turbulence & Visualizat Lab, San Antonio, TX 78249 USA
关键词
LCS; GPU-accelerated; DNS; Distributed memory algorithms; FTLE; FSLE; LAGRANGIAN COHERENT STRUCTURES; COMPUTATION; FTLE;
D O I
10.1016/j.softx.2024.101836
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce Aquila-LCS, GPU and CPU optimized object-oriented, in-house codes for volumetric particle advection and 3D Finite-Time Lyapunov Exponent (FTLE) and Finite-Size Lyapunov Exponent (FSLE) computations. The purpose is to analyze 3D Lagrangian Coherent Structures (LCS) in large Direct Numerical Simulation (DNS) data. Our technique uses advanced search strategies for quick cell identification and efficient storage techniques. This solver scales effectively on both GPUs (up to 62 NVIDIA V100 GPUs) and multi-core CPUs (up to 32,768 CPU-cores), tracking up to 8-billion particles. We apply our approach to turbulent boundary layers at different flow regimes and Reynolds numbers.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Large-scale parallelization based on CPU and GPU cluster for cosmological fluid simulations
    Meng, Chen
    Wang, Long
    Cao, Zongyan
    Feng, Long-long
    Zhu, Weishan
    [J]. COMPUTERS & FLUIDS, 2015, 110 : 152 - 158
  • [2] Efficient and Large-Scale Dissipative Particle Dynamics Simulations on GPU
    Yang, Keda
    Bai, Zhiqiang
    Su, Jiaye
    Guo, Hongxia
    [J]. SOFT MATERIALS, 2014, 12 (02) : 185 - 196
  • [3] Interactive visualization of large-scale numerical simulations with GPU-CPU systems
    Knox, M.
    Woodward, P.
    [J]. GEOFIZICHESKIY ZHURNAL-GEOPHYSICAL JOURNAL, 2010, 32 (04): : 65 - 65
  • [4] CPU and GPU Performance of Large Scale Numerical Simulations in Geophysics
    Dorostkar, Ali
    Lukarski, Dimitar
    Lund, Bjorn
    Neytcheva, Maya
    Notay, Yvan
    Schmidt, Peter
    [J]. EURO-PAR 2014: PARALLEL PROCESSING WORKSHOPS, PT I, 2014, 8805 : 12 - 23
  • [5] GPU-Accelerated Large-Scale Genome Assembly
    Goswami, Sayan
    Lee, Kisung
    Shams, Shayan
    Park, Seung-Jong
    [J]. 2018 32ND IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2018, : 814 - 824
  • [6] Explicit incompressible smoothed particle hydrodynamics in a multi-GPU environment for large-scale simulations
    Morikawa, Daniel
    Senadheera, Harini
    Asai, Mitsuteru
    [J]. COMPUTATIONAL PARTICLE MECHANICS, 2021, 8 (03) : 493 - 510
  • [7] Explicit incompressible smoothed particle hydrodynamics in a multi-GPU environment for large-scale simulations
    Daniel Morikawa
    Harini Senadheera
    Mitsuteru Asai
    [J]. Computational Particle Mechanics, 2021, 8 : 493 - 510
  • [8] GPU-accelerated large-scale simulations of interfacial multiphase fluids for real-case applications
    Ikebata, Akio
    Xiao, Feng
    [J]. COMPUTERS & FLUIDS, 2016, 141 : 235 - 249
  • [9] Accelerating large-scale phase-field simulations with GPU
    Shi, Xiaoming
    Huang, Houbing
    Cao, Guoping
    Ma, Xingqiao
    [J]. AIP ADVANCES, 2017, 7 (10):
  • [10] Parallel simulation of large-scale artificial society on CPU/GPU mixed architecture
    Guo Gang
    Chen Bin
    Qiu Xiao Gang
    Li Zhen
    [J]. 2012 ACM/IEEE/SCS 26TH WORKSHOP ON PRINCIPLES OF ADVANCED AND DISTRIBUTED SIMULATION (PADS), 2012, : 174 - 177