Aquila-LCS: GPU/CPU-accelerated particle advection schemes for large-scale simulations

被引:0
|
作者
Lagares, Christian [1 ,2 ]
Araya, Guillermo [2 ]
机构
[1] Univ Puerto Rico, Dept Mech Eng, POB 9000, Mayaguez, PR 00681 USA
[2] Univ Texas San Antonio, Dept Mech Eng, Computat Turbulence & Visualizat Lab, San Antonio, TX 78249 USA
关键词
LCS; GPU-accelerated; DNS; Distributed memory algorithms; FTLE; FSLE; LAGRANGIAN COHERENT STRUCTURES; COMPUTATION; FTLE;
D O I
10.1016/j.softx.2024.101836
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce Aquila-LCS, GPU and CPU optimized object-oriented, in-house codes for volumetric particle advection and 3D Finite-Time Lyapunov Exponent (FTLE) and Finite-Size Lyapunov Exponent (FSLE) computations. The purpose is to analyze 3D Lagrangian Coherent Structures (LCS) in large Direct Numerical Simulation (DNS) data. Our technique uses advanced search strategies for quick cell identification and efficient storage techniques. This solver scales effectively on both GPUs (up to 62 NVIDIA V100 GPUs) and multi-core CPUs (up to 32,768 CPU-cores), tracking up to 8-billion particles. We apply our approach to turbulent boundary layers at different flow regimes and Reynolds numbers.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Large-scale numerical simulations of polydisperse particle flow in a silo
    S. M. Rubio-Largo
    D. Maza
    R. C. Hidalgo
    [J]. Computational Particle Mechanics, 2017, 4 : 419 - 427
  • [32] Large-scale powder mixer simulations using massively parallel GPU architectures
    Radeke, Charles A.
    Glasser, Benjamin J.
    Khinast, Johannes G.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2010, 65 (24) : 6435 - 6442
  • [33] Large-scale hybrid simulations of particle acceleration at a parallel shock
    Giacalone, J
    [J]. ASTROPHYSICAL JOURNAL, 2004, 609 (01): : 452 - 458
  • [34] A GPU-accelerated Algorithm for Copy Move Detection in large-scale satellite images
    Barni, Mauro
    Costanzo, Andrea
    Dimitri, Giovanna Maria
    Tondi, Benedetta
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIX, 2023, 12733
  • [35] GPU-Accelerated Developments for the Realistic Simulation of Large-Scale Mud/Debris Flows
    Martinez-Aranda, Sergio
    Garcia, Reinaldo
    Garcia-Navarro, Pilar
    [J]. PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS, 2022, : 4240 - 4249
  • [36] GPU-Accelerated Soft Error Rate Analysis of Large-Scale Integrated Circuits
    Sabet, M. Amin
    Ghavami, Behnam
    Raji, Mohsen
    [J]. IEEE DESIGN & TEST, 2018, 35 (06) : 78 - 85
  • [37] Large-scale Multi-dimensional Assignment: Problem Formulations and GPU Accelerated Solutions
    Reynen, Olivia
    Vadrevu, Samhita
    Nagi, Rakesh
    LeGrand, Keith
    [J]. 2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [38] A GPU-Accelerated Integral-Equation Solution for Large-Scale Electromagnetic Problems
    Guan, Jian
    Yan, Su
    Jin, Jian-Ming
    [J]. 2014 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2014, : 181 - 181
  • [39] GPU-accelerated PIR with Client-Independent Preprocessing for Large-Scale Applications
    Guenther, Daniel
    Heymann, Maurice
    Pinkas, Benny
    Schneider, Thomas
    [J]. PROCEEDINGS OF THE 31ST USENIX SECURITY SYMPOSIUM, 2022, : 1759 - 1776
  • [40] Advancing Large Scale Many-Body QMC Simulations on GPU Accelerated Multicore Systems
    Tomas, Andres
    Chang, Chia-Chen
    Scalettar, Richard
    Bai, Zhaojun
    [J]. 2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2012, : 308 - 319