Aquila-LCS: GPU/CPU-accelerated particle advection schemes for large-scale simulations

被引:0
|
作者
Lagares, Christian [1 ,2 ]
Araya, Guillermo [2 ]
机构
[1] Univ Puerto Rico, Dept Mech Eng, POB 9000, Mayaguez, PR 00681 USA
[2] Univ Texas San Antonio, Dept Mech Eng, Computat Turbulence & Visualizat Lab, San Antonio, TX 78249 USA
关键词
LCS; GPU-accelerated; DNS; Distributed memory algorithms; FTLE; FSLE; LAGRANGIAN COHERENT STRUCTURES; COMPUTATION; FTLE;
D O I
10.1016/j.softx.2024.101836
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce Aquila-LCS, GPU and CPU optimized object-oriented, in-house codes for volumetric particle advection and 3D Finite-Time Lyapunov Exponent (FTLE) and Finite-Size Lyapunov Exponent (FSLE) computations. The purpose is to analyze 3D Lagrangian Coherent Structures (LCS) in large Direct Numerical Simulation (DNS) data. Our technique uses advanced search strategies for quick cell identification and efficient storage techniques. This solver scales effectively on both GPUs (up to 62 NVIDIA V100 GPUs) and multi-core CPUs (up to 32,768 CPU-cores), tracking up to 8-billion particles. We apply our approach to turbulent boundary layers at different flow regimes and Reynolds numbers.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Acceleration of Large-Scale FDTD Simulations on High Performance GPU Clusters
    Ong, C.
    Weldon, M.
    Cyca, D.
    Okoniewski, M.
    [J]. 2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 545 - 548
  • [22] A Distributed CPU-GPU Framework for Pairwise Alignments on Large-Scale Sequence Datasets
    Li, Da
    Sajjapongse, Kittisak
    Huan Truong
    Conant, Gavin
    Becchi, Michela
    [J]. PROCEEDINGS OF THE 2013 IEEE 24TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP 13), 2013, : 329 - 338
  • [23] Stochastic configuration networks with CPU-GPU implementation for large-scale data analytics
    Li J.
    Wang D.
    [J]. Information Sciences, 2024, 667
  • [24] IMGPU: GPU-Accelerated Influence Maximization in Large-Scale Social Networks
    Liu, Xiaodong
    Li, Mo
    Li, Shanshan
    Peng, Shaoliang
    Liao, Xiangke
    Lu, Xiaopei
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2014, 25 (01) : 136 - 145
  • [25] Accelerated Parallel WLS State Estimation for Large-Scale Power Systems on GPU
    Karimipour, Hadis
    Dinavahi, Venkata
    [J]. 2013 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2013,
  • [26] GPU-Accelerated Primal Learning for Extremely Fast Large-Scale Classification
    Halloran, John T.
    Rocke, David M.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [27] Large Scale GPU Accelerated PPMLR-MHD Simulations for Space Weather Forecast
    Guo, Xiangyu
    Tang, Binbin
    Tao, Jian
    Huang, Zhaohui
    Du, Zhihui
    [J]. 2016 16TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2016, : 576 - 581
  • [28] State Estimation for Large-Scale Power System Based on Hybrid CPU-GPU Platform
    Xia, Yue
    Chen, Ying
    Ren, Zhengwei
    Huang, Shaowei
    Wang, Mingxuan
    Lin, Meng
    [J]. 2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [29] Learning Driven Parallelization for Large-Scale Video Workload in Hybrid CPU-GPU Cluster
    Zhang, Haitao
    Tang, Bingchang
    Geng, Xin
    Ma, Huadong
    [J]. PROCEEDINGS OF THE 47TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2018,
  • [30] GPU Acceleration of Hydraulic Transient Simulations of Large-Scale Water Supply Systems
    Meng, Wanwan
    Cheng, Yongguang
    Wu, Jiayang
    Yang, Zhiyan
    Zhu, Yunxian
    Shang, Shuai
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (01):