Large-scale parallelization based on CPU and GPU cluster for cosmological fluid simulations

被引:4
|
作者
Meng, Chen [1 ,2 ]
Wang, Long [1 ]
Cao, Zongyan [1 ,3 ]
Feng, Long-long [4 ]
Zhu, Weishan [4 ]
机构
[1] Chinese Acad Sci, Supercomp Ctr, Comp Network Informat Ctr, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
[4] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Jiangsu, Peoples R China
关键词
Cosmological hydrodynamics; WENO; GPU; Hierarchical memory; Heterogeneous; Large-scale;
D O I
10.1016/j.compfluid.2014.04.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present our parallel implementation for large-scale cosmological simulations of 3D supersonic fluids based on CPU and GPU clusters. Our developments are based on a CPU code named WIGEON. It is shown that, compared to the original sequential Fortran code, a speedup of 19-31 (depending on the specific GPU card) can be achieved on single GPU. Furthermore, our results show that the pure MPI parallelization scales very well up to 10 thousand CPU cores. In addition, a hybrid CPU/GPU parallelization scheme is introduced and a detailed analysis of the speedup and the scaling on the different number of CPU/GPU units are presented (up to 256 GPU cards due to computing resource limitation). Our high scalability and speedup rely on the domain decomposition approach, optimization of the algorithm and a series of techniques to optimize the CUDA implementation, especially in the memory access pattern on CPU. We believe this hybrid MPI + CUDA code can be an excellent candidate for 10 Peta-scale computing and beyond. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:152 / 158
页数:7
相关论文
共 50 条
  • [1] Learning Driven Parallelization for Large-Scale Video Workload in Hybrid CPU-GPU Cluster
    Zhang, Haitao
    Tang, Bingchang
    Geng, Xin
    Ma, Huadong
    PROCEEDINGS OF THE 47TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2018,
  • [2] Interactive visualization of large-scale numerical simulations with GPU-CPU systems
    Knox, M.
    Woodward, P.
    GEOFIZICHESKIY ZHURNAL-GEOPHYSICAL JOURNAL, 2010, 32 (04): : 65 - 65
  • [3] CPU and GPU Performance of Large Scale Numerical Simulations in Geophysics
    Dorostkar, Ali
    Lukarski, Dimitar
    Lund, Bjorn
    Neytcheva, Maya
    Notay, Yvan
    Schmidt, Peter
    EURO-PAR 2014: PARALLEL PROCESSING WORKSHOPS, PT I, 2014, 8805 : 12 - 23
  • [4] Large-Scale Pairwise Sequence Alignments on a Large-Scale GPU Cluster
    Savran, Ibrahim
    Gao, Yang
    Bakos, Jason D.
    IEEE DESIGN & TEST, 2014, 31 (01) : 51 - 61
  • [5] Large-scale dual AGN in large-scale cosmological hydrodynamical simulations
    Puerto-Sanchez, Clara
    Habouzit, Melanie
    Volonteri, Marta
    Ni, Yueying
    Foord, Adi
    Angles-Alcazar, Daniel
    Chen, Nianyi
    Guetzoyan, Paloma
    Dave, Romeel
    Di Matteo, Tiziana
    Dubois, Yohan
    Koss, Michael
    Rosas-Guevara, Yetli
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2025, 536 (03) : 3016 - 3040
  • [6] The FLAMINGO project: cosmological hydrodynamical simulations for large-scale structure and galaxy cluster surveys
    Schaye, Joop
    Kugel, Roi
    Schaller, Matthieu
    Helly, John C.
    Braspenning, Joey
    Elbers, Willem
    Mccarthy, Ian G.
    van Daalen, Marcel P.
    Vandenbroucke, Bert
    Frenk, Carlos S.
    Kwan, Juliana
    Salcido, Jaime
    Bahe, Yannick M.
    Borrow, Josh
    Chaikin, Evgenii
    Hahn, Oliver
    Husko, Filip
    Jenkins, Adrian
    Lacey, Cedric G.
    Nobels, Folkert S. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 526 (04) : 4978 - 5020
  • [7] Aquila-LCS: GPU/CPU-accelerated particle advection schemes for large-scale simulations
    Lagares, Christian
    Araya, Guillermo
    SOFTWAREX, 2024, 27
  • [8] CPU-GPU hybrid parallel strategy for cosmological simulations
    Wang, Yueqing
    Dou, Yong
    Guo, Song
    Lei, Yuanwu
    Zou, Dan
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (03): : 748 - 765
  • [9] State Estimation for Large-Scale Power System Based on Hybrid CPU-GPU Platform
    Xia, Yue
    Chen, Ying
    Ren, Zhengwei
    Huang, Shaowei
    Wang, Mingxuan
    Lin, Meng
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [10] Multi-GPU and Multi-CPU Parallelization for Interactive Physics Simulations
    Hermann, Everton
    Raffin, Bruno
    Faure, Francois
    Gautier, Thierry
    Allard, Jeremie
    EURO-PAR 2010 - PARALLEL PROCESSING, PART II, 2010, 6272 : 235 - 246