Large-scale parallelization based on CPU and GPU cluster for cosmological fluid simulations

被引:4
|
作者
Meng, Chen [1 ,2 ]
Wang, Long [1 ]
Cao, Zongyan [1 ,3 ]
Feng, Long-long [4 ]
Zhu, Weishan [4 ]
机构
[1] Chinese Acad Sci, Supercomp Ctr, Comp Network Informat Ctr, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
[4] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Jiangsu, Peoples R China
关键词
Cosmological hydrodynamics; WENO; GPU; Hierarchical memory; Heterogeneous; Large-scale;
D O I
10.1016/j.compfluid.2014.04.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present our parallel implementation for large-scale cosmological simulations of 3D supersonic fluids based on CPU and GPU clusters. Our developments are based on a CPU code named WIGEON. It is shown that, compared to the original sequential Fortran code, a speedup of 19-31 (depending on the specific GPU card) can be achieved on single GPU. Furthermore, our results show that the pure MPI parallelization scales very well up to 10 thousand CPU cores. In addition, a hybrid CPU/GPU parallelization scheme is introduced and a detailed analysis of the speedup and the scaling on the different number of CPU/GPU units are presented (up to 256 GPU cards due to computing resource limitation). Our high scalability and speedup rely on the domain decomposition approach, optimization of the algorithm and a series of techniques to optimize the CUDA implementation, especially in the memory access pattern on CPU. We believe this hybrid MPI + CUDA code can be an excellent candidate for 10 Peta-scale computing and beyond. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:152 / 158
页数:7
相关论文
共 50 条
  • [41] SIMULATIONS OF LARGE-SCALE STRUCTURE COMPARED TO ABELL CLUSTER DISTRIBUTION
    BATUSKI, DJ
    MELOTT, A
    BURNS, JO
    IAU SYMPOSIA, 1987, (124): : 323 - 326
  • [42] Scalar-fluid theories: cosmological perturbations and large-scale structure
    Koivisto, Tomi S.
    Saridakis, Emmanuel N.
    Tamanini, Nicola
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (09):
  • [43] Graphics Processing Unit Acceleration and Parallelization of GENESIS for Large-Scale Molecular Dynamics Simulations
    Jung, Jaewoon
    Naurse, Akira
    Kobayashi, Chigusa
    Sugita, Yuji
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (10) : 4947 - 4958
  • [44] Efficient parallelization of analytic bond-order potentials for large-scale atomistic simulations
    Teijeiro, C.
    Hammerschmidt, T.
    Drautz, R.
    Sutmann, G.
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 204 : 64 - 73
  • [45] GPU Acceleration of Hydraulic Transient Simulations of Large-Scale Water Supply Systems
    Meng, Wanwan
    Cheng, Yongguang
    Wu, Jiayang
    Yang, Zhiyan
    Zhu, Yunxian
    Shang, Shuai
    APPLIED SCIENCES-BASEL, 2019, 9 (01):
  • [46] Large-scale powder mixer simulations using massively parallel GPU architectures
    Radeke, Charles A.
    Glasser, Benjamin J.
    Khinast, Johannes G.
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (24) : 6435 - 6442
  • [47] Acceleration of large-scale CGH generation using multi-GPU cluster
    Watanabe, Shinpei
    Jackin, Boaz Jessie
    Ohkawa, Takeshi
    Ootsu, Kanemitsu
    Yokota, Takashi
    Hayasaki, Yoshio
    Yatagai, Toyohiko
    Baba, Takanobu
    2017 FIFTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2017, : 589 - 593
  • [48] GPU Cluster Implementation of FMM-FFT for Large-Scale Electromagnetic Problems
    Vinh Dang
    Nguyen, Quang M.
    Kilic, Ozlem
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2014, 13 : 1259 - 1262
  • [49] Fluid Flow Simulations of a Large-Scale Borehole Leakage Experiment
    Tim Klose
    M. Carme Chaparro
    Frank Schilling
    Christoph Butscher
    Steffen Klumbach
    Philipp Blum
    Transport in Porous Media, 2021, 136 : 125 - 145
  • [50] Large-Scale Parallelization of Human Migration Simulation
    Groen, Derek
    Papadopoulou, Nikela
    Anastasiadis, Petros
    Lawenda, Marcin
    Szustak, Lukasz
    Gogolenko, Sergiy
    Arabnejad, Hamid
    Jahani, Alireza
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (02) : 2135 - 2146