Graphics Processing Unit Acceleration and Parallelization of GENESIS for Large-Scale Molecular Dynamics Simulations

被引:21
|
作者
Jung, Jaewoon [1 ,2 ]
Naurse, Akira [3 ]
Kobayashi, Chigusa [2 ]
Sugita, Yuji [1 ,2 ,4 ,5 ]
机构
[1] RIKEN Theoret Mol Sci Lab, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[2] RIKEN Adv Inst Computat Sci, Chuo Ku, 7-1-26 Minatojima Minamimachi, Kobe, Hyogo 6400047, Japan
[3] NVIDIA, Minato Ku, 2-11-7 Akasaka, Tokyo 1070052, Japan
[4] RIKEN iTHES, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[5] RIKEN Quantitat Biol Ctr QBiC, Lab Biomol Funct Simulat, Chuo Ku, 6-7-1 Minatojima Minamimachi, Kobe, Hyogo 6500047, Japan
关键词
PARTICLE MESH EWALD; FORCE-FIELD; ENERGETICS; EFFICIENT; AMBER; IMPLEMENTATION; ALGORITHMS; SYSTEMS; SCHEMES; CHANNEL;
D O I
10.1021/acs.jctc.6b00241
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The graphics processing unit (GPU) has become a popular computational platform for molecular dynamics (MD) simulations of biomolecules. A significant speedup in the simulations of small- or medium-size systems using only a few computer nodes with a single or multiple GPUs has been reported. Because of GPU memory limitation and slow communication between GPUs on different computer nodes, it is not straightforward to accelerate MD simulations of large biological systems that contain a few million or more atoms on massively parallel supercomputers with GPUs. In this study, we develop a new scheme in our MD software, GENESIS, to reduce the, total computational time on such computers. Computationally intensive real-space nonbonded interactions are computed mainly on GPUs in the scheme, while less intensive bonded interactions and communication intensive reciprocal-space interactions are performed on CPUs. On the basis of the midpoint cell method as a domain decomposition scheme, we invent the single particle interaction list for reducing the GPU memory usage. Since total computational time is limited by the reciprocal-space computation, we utilize the RESPA multiple time-step integration and reduce the CPU resting time by assigning a subset of nonbonded interactions on CPUs as well as on GPUs when the reciprocal space computation is skipped. We validated our GPU implementations in GENESIS on BPTI and a membrane protein, porin, by MD simulations and an alanine-tripeptide by REMD simulations. Benchmark calculations on TSUBAME supercomputer showed that an MD simulation of a million atoms system was scalable up to 256 computer nodes with GPUs.
引用
收藏
页码:4947 / 4958
页数:12
相关论文
共 50 条
  • [1] Towards Large-Scale Molecular Dynamics Simulations on Graphics Processors
    Davis, Joseph E.
    Ozsoy, Adnan
    Patel, Sandeep
    Taufer, Michela
    BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, PROCEEDINGS, 2009, 5462 : 176 - 186
  • [2] Large-scale ferrofluid simulations on graphics processing units
    Polyakov, A. Yu.
    Lyutyy, T. V.
    Denisov, S.
    Reva, V. V.
    Haenggi, P.
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (06) : 1483 - 1489
  • [3] Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS
    Pall, Szilard
    Zhmurov, Artem
    Bauer, Paul
    Abraham, Mark
    Lundborg, Magnus
    Gray, Alan
    Hess, Berk
    Lindahl, Erik
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (13):
  • [4] Large-scale ensemble simulations of biomathematical brain arteriovenous malformation models using graphics processing unit computation
    Jain, Mika S.
    Do, Huy M.
    Wintermark, Max
    Massoud, Tarik F.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 113
  • [5] Impact of multicores on large-scale molecular dynamics simulations
    Alam, Sadaf R.
    Agarwal, Pratul K.
    Hampton, Scott S.
    Ong, Hong
    Vetter, Jeffrey S.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 544 - 550
  • [6] Large-scale molecular dynamics simulations of fracture and deformation
    Los Alamos Natl Lab, Los Alamos, United States
    J Comput Aid Mat Des, 1-3 (183-186):
  • [7] Large-scale molecular simulations of dynamics in mechanical proteins
    Dima, Ruxandra I.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [8] Parallel computation of large-scale molecular dynamics simulations
    Kwon, Sungjin
    Lee, Youngmin
    Im, Seyoung
    Experimental Mechanics in Nano and Biotechnology, Pts 1 and 2, 2006, 326-328 : 341 - 344
  • [9] Large-scale molecular dynamics simulations of glancing angle deposition
    Hubartt, Bradley C.
    Liu, Xuejing
    Amar, Jacques G.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (08)
  • [10] Large-scale molecular dynamics simulations of materials on parallel computers
    Nakano, A
    Campbell, TJ
    Kalia, RK
    Kodiyalam, S
    Ogata, S
    Shimojo, F
    Vashishta, P
    Walsh, P
    ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2001, 583 : 57 - 62