Geometry of Gaussian free field sign clusters and random interlacements

被引:2
|
作者
Drewitz, Alexander [1 ]
Prevost, Alexis [2 ]
Rodriguez, Pierre-Francois [3 ]
机构
[1] Univ Cologne, Dept Math Informat, D-50931 Cologne, Germany
[2] Univ Geneva, Sect Math, CH-1211 Geneva, Switzerland
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
关键词
60K35; 60G15; 60G60; 82B43; LEVEL-SET PERCOLATION; SIMPLE RANDOM-WALK; DISCRETE CYLINDERS; VOLUME GROWTH; HEAT KERNELS; VACANT SET; DISCONNECTION; INEQUALITIES; SYSTEMS; TORUS;
D O I
10.1007/s00440-024-01285-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a large class of amenable transient weighted graphs G, we prove that the sign clusters of the Gaussian free field on G fall into a regime of strong supercriticality, in which two infinite sign clusters dominate (one for each sign), and finite sign clusters are necessarily tiny, with overwhelming probability. Examples of graphs belonging to this class include regular lattices such as Z d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}<^>d$$\end{document} , for d >= 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document} , but also more intricate geometries, such as Cayley graphs of suitably growing (finitely generated) non-Abelian groups, and cases in which random walks exhibit anomalous diffusive behavior, for instance various fractal graphs. As a consequence, we also show that the vacant set of random interlacements on these objects, introduced by Sznitman (Ann Math 171(3):2039-2087, 2010), and which is intimately linked to the free field, contains an infinite connected component at small intensities. In particular, this result settles an open problem from Sznitman (Invent Math 187(3):645-706, 2012).
引用
收藏
页数:96
相关论文
共 50 条
  • [41] Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field
    Biskup, Marek
    Ding, Jian
    Goswami, Subhajit
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 373 (01) : 45 - 106
  • [42] Return Probability and Recurrence for the Random Walk Driven by Two-Dimensional Gaussian Free Field
    Marek Biskup
    Jian Ding
    Subhajit Goswami
    Communications in Mathematical Physics, 2020, 373 : 45 - 106
  • [43] Latent Gaussian random field mixture models
    Bolin, David
    Wallin, Jonas
    Lindgren, Finn
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 130 : 80 - 93
  • [44] Advances in Gaussian random field generation: a review
    Liu, Yang
    Li, Jingfa
    Sun, Shuyu
    Yu, Bo
    COMPUTATIONAL GEOSCIENCES, 2019, 23 (05) : 1011 - 1047
  • [45] Strong Gaussian approximation of an associated random field
    Shashkin, A. P.
    RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (05) : 1012 - 1014
  • [46] NUMBER DENSITY OF FILAMENTS IN A RANDOM GAUSSIAN FIELD
    BETANCORTRIJO, J
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1990, 243 (04) : 656 - 661
  • [47] AUGMENTED GAUSSIAN RANDOM FIELD: THEORY AND COMPUTATION
    Zhang, Sheng
    Yang, Xiu
    Tindel, Samy
    Lin, Guang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (04): : 931 - 957
  • [48] Advances in Gaussian random field generation: a review
    Yang Liu
    Jingfa Li
    Shuyu Sun
    Bo Yu
    Computational Geosciences, 2019, 23 : 1011 - 1047
  • [49] HAUSDORFF DIMENSION OF GRAPH OF A GAUSSIAN RANDOM FIELD
    ZINCHENKO, NM
    MATHEMATICAL NOTES, 1977, 21 (1-2) : 72 - 74
  • [50] ESTIMATION OF SMOOTHNESS OF A STATIONARY GAUSSIAN RANDOM FIELD
    Wu, Wei-Ying
    Lim, Chae Young
    STATISTICA SINICA, 2016, 26 (04) : 1729 - 1745