Geometry of Gaussian free field sign clusters and random interlacements

被引:2
|
作者
Drewitz, Alexander [1 ]
Prevost, Alexis [2 ]
Rodriguez, Pierre-Francois [3 ]
机构
[1] Univ Cologne, Dept Math Informat, D-50931 Cologne, Germany
[2] Univ Geneva, Sect Math, CH-1211 Geneva, Switzerland
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
关键词
60K35; 60G15; 60G60; 82B43; LEVEL-SET PERCOLATION; SIMPLE RANDOM-WALK; DISCRETE CYLINDERS; VOLUME GROWTH; HEAT KERNELS; VACANT SET; DISCONNECTION; INEQUALITIES; SYSTEMS; TORUS;
D O I
10.1007/s00440-024-01285-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a large class of amenable transient weighted graphs G, we prove that the sign clusters of the Gaussian free field on G fall into a regime of strong supercriticality, in which two infinite sign clusters dominate (one for each sign), and finite sign clusters are necessarily tiny, with overwhelming probability. Examples of graphs belonging to this class include regular lattices such as Z d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}<^>d$$\end{document} , for d >= 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document} , but also more intricate geometries, such as Cayley graphs of suitably growing (finitely generated) non-Abelian groups, and cases in which random walks exhibit anomalous diffusive behavior, for instance various fractal graphs. As a consequence, we also show that the vacant set of random interlacements on these objects, introduced by Sznitman (Ann Math 171(3):2039-2087, 2010), and which is intimately linked to the free field, contains an infinite connected component at small intensities. In particular, this result settles an open problem from Sznitman (Invent Math 187(3):645-706, 2012).
引用
收藏
页数:96
相关论文
共 50 条
  • [21] Information geometry, simulation and complexity in Gaussian random fields
    Levada, Alexandre L.
    MONTE CARLO METHODS AND APPLICATIONS, 2016, 22 (02): : 81 - 107
  • [22] SOME RESULTS ON GEOMETRY OF GAUSSIAN RANDOM-FIELDS
    ORSINGHER, E
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1983, 28 (06): : 493 - 511
  • [23] Ray optics approximation for random clusters of Gaussian spheres
    Muinonen, K
    OBSERVING LAND FROM SPACE: SCIENCE, CUSTOMERS AND TECHNOLOGY, 2000, 4 : 209 - 217
  • [24] Random process in a homogeneous Gaussian field
    Alkhimov V.I.
    Journal of Mathematical Sciences, 2010, 167 (6) : 727 - 740
  • [25] THE CLUSTERING OF PEAKS IN A RANDOM GAUSSIAN FIELD
    LUMSDEN, SL
    HEAVENS, AF
    PEACOCK, JA
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1989, 238 (01) : 293 - 318
  • [26] Gaussian random field models of aerogels
    Quintanilla, J. (johnq@unt.edu), 1600, American Institute of Physics Inc. (93):
  • [27] Gaussian random field models of aerogels
    Quintanilla, J
    Reidy, RF
    Gorman, BP
    Mueller, DW
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (08) : 4584 - 4589
  • [28] Gaussian Process Latent Random Field
    Zhong, Guoqiang
    Li, Wu-Jun
    Yeung, Dit-Yan
    Hou, Xinwen
    Liu, Cheng-Lin
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 679 - 684
  • [29] Simulation of Gaussian random field in a ball
    Kolyukhin, Dmitriy
    Minakov, Alexander
    MONTE CARLO METHODS AND APPLICATIONS, 2022, 28 (01): : 85 - 95
  • [30] Skew-Gaussian random field
    Alodat, M. T.
    Al-Rawwash, M. Y.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) : 496 - 504