Geometry of Gaussian free field sign clusters and random interlacements

被引:2
|
作者
Drewitz, Alexander [1 ]
Prevost, Alexis [2 ]
Rodriguez, Pierre-Francois [3 ]
机构
[1] Univ Cologne, Dept Math Informat, D-50931 Cologne, Germany
[2] Univ Geneva, Sect Math, CH-1211 Geneva, Switzerland
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
关键词
60K35; 60G15; 60G60; 82B43; LEVEL-SET PERCOLATION; SIMPLE RANDOM-WALK; DISCRETE CYLINDERS; VOLUME GROWTH; HEAT KERNELS; VACANT SET; DISCONNECTION; INEQUALITIES; SYSTEMS; TORUS;
D O I
10.1007/s00440-024-01285-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a large class of amenable transient weighted graphs G, we prove that the sign clusters of the Gaussian free field on G fall into a regime of strong supercriticality, in which two infinite sign clusters dominate (one for each sign), and finite sign clusters are necessarily tiny, with overwhelming probability. Examples of graphs belonging to this class include regular lattices such as Z d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}<^>d$$\end{document} , for d >= 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document} , but also more intricate geometries, such as Cayley graphs of suitably growing (finitely generated) non-Abelian groups, and cases in which random walks exhibit anomalous diffusive behavior, for instance various fractal graphs. As a consequence, we also show that the vacant set of random interlacements on these objects, introduced by Sznitman (Ann Math 171(3):2039-2087, 2010), and which is intimately linked to the free field, contains an infinite connected component at small intensities. In particular, this result settles an open problem from Sznitman (Invent Math 187(3):645-706, 2012).
引用
收藏
页数:96
相关论文
共 50 条
  • [31] Gaussian free field in the iso-height random islands tuned by percolation model
    Cheraghalizadeh, J.
    Najafi, M. N.
    Mohammadzadeh, H.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [32] A characterisation of the Gaussian free field
    Nathanaël Berestycki
    Ellen Powell
    Gourab Ray
    Probability Theory and Related Fields, 2020, 176 : 1259 - 1301
  • [33] On the linear combination of the Gaussian and student's t random field and the integral geometry of its excursion sets
    Ahmad, Ola
    Pinoli, Jean-Charles
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (02) : 559 - 567
  • [34] A characterisation of the Gaussian free field
    Berestycki, Nathanael
    Powell, Ellen
    Ray, Gourab
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 176 (3-4) : 1259 - 1301
  • [35] Dominos and the Gaussian free field
    Kenyon, R
    ANNALS OF PROBABILITY, 2001, 29 (03): : 1128 - 1137
  • [36] The geometry of the Wilks’s Λ random field
    F. Carbonell
    K. J. Worsley
    L. Galan
    Annals of the Institute of Statistical Mathematics, 2011, 63 : 1 - 27
  • [37] The geometry of the Wilks's A random field
    Carbonell, F.
    Worsley, K. J.
    Galan, L.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (01) : 1 - 27
  • [38] GAUSSIAN FREE FIELD AND CONFORMAL FIELD THEORY
    Kang, Nam-Gyu
    Makarov, Nikolai G.
    ASTERISQUE, 2013, (353) : 1 - +
  • [39] Ising spin glass in a random network with a Gaussian random field
    Erichsen Jr, R.
    Silveira, A.
    Magalhaes, S. G.
    PHYSICAL REVIEW E, 2021, 103 (02)
  • [40] GENERATING GALTON-WATSON TREES USING RANDOM WALKS AND PERCOLATION FOR THE GAUSSIAN FREE FIELD
    Drewitz, Alexander
    Gallo, Gioele
    Prevost, Alexis
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (03): : 2844 - 2884