ESTIMATION OF SMOOTHNESS OF A STATIONARY GAUSSIAN RANDOM FIELD

被引:5
|
作者
Wu, Wei-Ying [1 ]
Lim, Chae Young [2 ]
机构
[1] Natl Dong Hwa Univ, Dept Appl Math, 1,Sec 2,Hsueh Rd, Hualien 97401, Taiwan
[2] Seoul Natl Univ, Dept Stat, Seoul, South Korea
关键词
Fractal dimension; fractal index; Gaussian random fields; infill asymptotics; periodogram; smoothness; spectral density; FRACTAL DIMENSION; SPATIAL DATA; MODELS;
D O I
10.5705/ss.202014.0109
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a stationary Gaussian random field, the decay rate of the spectral density as the frequency becomes large determines the smoothness of the random field. The decay rate of the spectral density is also related to the fractal dimension, which is used to measure the surface smoothness of a random field. We propose an estimator of the decay rate using the periodogram when the observations are on a grid and investigate the asymptotic properties under the fixed domain asymptotic setting. A bias-reduced estimate is proposed based on the theoretical property of the estimator found in this work. A simulation study and a data example are presented.
引用
下载
收藏
页码:1729 / 1745
页数:17
相关论文
共 50 条
  • [1] Tail estimation of the spectral density for a stationary Gaussian random field
    Wu, Wei-Ying
    Lim, Chae Young
    Xiao, Yimin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 74 - 91
  • [2] Fiducial estimation of m-stationary gaussian random processes
    Volchkov, VP
    RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (02): : 150 - 160
  • [3] The Markov method for optimal nonlinear estimation of gaussian stationary divisible random fields
    Yarlykov, MS
    Shvetsov, VI
    RADIOTEKHNIKA I ELEKTRONIKA, 1997, 42 (04): : 442 - 450
  • [4] BSTJ BRIEFS - ESTIMATION OF VARIANCE OF A STATIONARY GAUSSIAN RANDOM PROCESS BY PERIODIC SAMPLING
    DALE, JC
    BELL SYSTEM TECHNICAL JOURNAL, 1967, 46 (06): : 1283 - +
  • [5] Maximum Likelihood Estimation for a Smooth Gaussian Random Field Model
    Xu, Wanting
    Stein, Michael L.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 138 - 175
  • [6] The Connection Between Bayesian Estimation of a Gaussian Random Field and RKHS
    Aravkin, Aleksandr Y.
    Bell, Bradley M.
    Burke, James V.
    Pillonetto, Gianluigi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (07) : 1518 - 1524
  • [7] REGULARITY OF STATIONARY GAUSSIAN RANDOM FUNCTIONS
    FERNIQUE, X
    PROBABILITY THEORY AND RELATED FIELDS, 1991, 88 (04) : 521 - 536
  • [8] TESTING FOR A SIGNAL WITH UNKNOWN LOCATION AND SCALE IN A STATIONARY GAUSSIAN RANDOM-FIELD
    SIEGMUND, DO
    WORSLEY, KJ
    ANNALS OF STATISTICS, 1995, 23 (02): : 608 - 639
  • [9] Smoothness estimation of nonstationary Gaussian random fields from irregularly spaced data observed along a curve
    Wen, Jun
    Sun, Saifei
    Loh, Wei-Liem
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 6071 - 6150
  • [10] Multiple fundamental frequency estimation using Gaussian smoothness
    Pertusa, Antonio
    Inesta, Jose M.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 105 - 108