A model-based MR parameter mapping network robust to substantial variations in acquisition settings

被引:1
|
作者
Lu, Qiqi [1 ,2 ,3 ,4 ,5 ,6 ]
Li, Jialong [1 ,2 ,3 ,4 ,5 ,6 ]
Lian, Zifeng [1 ,2 ,3 ,4 ,5 ,6 ]
Zhang, Xinyuan [1 ,2 ]
Feng, Qianjin [1 ,2 ]
Chen, Wufan [1 ,2 ]
Ma, Jianhua [1 ,2 ]
Feng, Yanqiu [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou 510000, Peoples R China
[2] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangdong Prov Engn Lab Med Imaging & Diagnost Tec, Guangzhou 510000, Peoples R China
[3] Southern Med Univ, Guangdong Hong Kong Macao Greater Bay Area Ctr Bra, Hong Kong 510000, Guangdong, Peoples R China
[4] Southern Med Univ, Key Lab Mental Hlth Minist Educ & Guangdong, Guangzhou 510000, Peoples R China
[5] Southern Med Univ, Guangdong Hong Kong Joint Lab Psychiat Disorders, Guangzhou 510000, Guangdong, Peoples R China
[6] Southern Med Univ, Shunde Hosp, Peoples Hosp Shunde 1, Dept Radiol, Foshan 528000, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic resonance imaging; Parameter mapping; Deep learning; Regularization; RELAXATION-TIMES; INVERSE PROBLEMS; RECONSTRUCTION; REGULARIZATION; BRAIN; ALGORITHM; TISSUE;
D O I
10.1016/j.media.2024.103148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning methods show great potential for the efficient and precise estimation of quantitative parameter maps from multiple magnetic resonance (MR) images. Current deep learning-based MR parameter mapping (MPM) methods are mostly trained and tested using data with specific acquisition settings. However, scan protocols usually vary with centers, scanners, and studies in practice. Thus, deep learning methods applicable to MPM with varying acquisition settings are highly required but still rarely investigated. In this work, we develop a model-based deep network termed MMPM-Net for robust MPM with varying acquisition settings. A deep learning-based denoiser is introduced to construct the regularization term in the nonlinear inversion problem of MPM. The alternating direction method of multipliers is used to solve the optimization problem and then unrolled to construct MMPM-Net. The variation in acquisition parameters can be addressed by the data fidelity component in MMPM-Net. Extensive experiments are performed on R2 mapping and R1 mapping datasets with substantial variations in acquisition settings, and the results demonstrate that the proposed MMPM-Net method outperforms other state-of-the-art MR parameter mapping methods both qualitatively and quantitatively.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A robust model-based control for uncertain systems
    Hamamci, SE
    Ucar, A
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2002, 24 (05) : 431 - 445
  • [42] A robust model-based detector for active sonar
    Abraham, DA
    Hillsley, KL
    Norrmann, J
    OCEANS 2001 MTS/IEEE: AN OCEAN ODYSSEY, VOLS 1-4, CONFERENCE PROCEEDINGS, 2001, : 2139 - 2146
  • [43] On the design of robust internal model-based controllers
    Murad, G
    Gu, DW
    Postlethwaite, I
    INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (03) : 513 - 537
  • [44] Robust model-based signal analysis and identification
    Pycock, D
    Pammu, S
    Goode, AJ
    Harman, SA
    PATTERN RECOGNITION, 2001, 34 (11) : 2181 - 2199
  • [45] Model-based autonomy for robust mars operations
    Kurien, JA
    Nayak, PP
    Williams, BC
    PROCEEDINGS OF THE FOUNDING CONVENTION OF THE MARS SOCIETY, PT II, 1999, : 421 - 433
  • [46] Robust inference for parsimonious model-based clustering
    Dotto, Francesco
    Farcomeni, Alessio
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (03) : 414 - 442
  • [47] A robust model-based test planning procedure
    Vinot, P
    Cogan, S
    Cipolla, V
    JOURNAL OF SOUND AND VIBRATION, 2005, 288 (03) : 571 - 585
  • [48] Robust model-based stratification sampling designs
    Zhai, Zhichun
    Wiens, Douglas P.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (04): : 554 - 577
  • [49] A multi-scale residual network for accelerated radial MR parameter mapping
    Fu, Zhiyang
    Mandava, Sagar
    Keerthivasan, Mahesh B.
    Li, Zhitao
    Johnson, Kevin
    Martin, Diego R.
    Altbach, Maria, I
    Bilgin, Ali
    MAGNETIC RESONANCE IMAGING, 2020, 73 : 152 - 162
  • [50] A Model-Based Strategy With Robust Parameter Mismatch for Online HRC Diagnosis and Location in PMSM Drive System
    Hang, Jun
    Zhang, Jibo
    Ding, Shichuan
    Huang, Yourui
    Wang, Qunjing
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (10) : 10917 - 10929